

Polynomial semantics of probabilistic circuits

Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck

University of California, Los Angeles

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Transformers Diffusion models VAEs

Expressive-efficient

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Fully factorized HMMs Mixture models Tractable Transformers Diffusion models

VAEs

Expressive-efficient

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Fully factorized HMMs ???Mixture models Tractable Transformers Diffusion models VAEs

Expressive-efficient

Marginal Inference

X_1	X_2	Pr	
0	0	.1	$\Pr[X_1 = 1] = \Pr[X_1 = 1, X_2 = 0] + \Pr[X_1 = 1, X_2 = 1]$
0	1	.2	
1	0	.3	= 0.3 + 0.4
1	1	.4	= 0.7

Marginal Inference

Goal: Find maximally expressive-efficient models that support marginal inference in time polynomial in the model size.

Approaches

Bayesian Networks (of bounded treewidth) Determinantal Point Processes Characteristic Circuits Multi-Linear Representations Probabilistic Generating Circuits Sum-Product Networks

. . .

Approaches

Bayesian Networks (of bounded treewidth) **Determinantal Point Processes Characteristic Circuits** Multi-Linear Representations **Probabilistic Generating Circuits** Sum-Product Networks . . . Polynomials!

Approaches

Circuits represent polynomials succinctly

 $3x_1x_2 + x_1x_3 + 6x_2^2 + 2x_2x_3$

Circuits represent polynomials succinctly

Circuits are *fully expressive*

 $3x_1x_2 + x_1x_3 + 6x_2^2 + 2x_2x_3$

Circuits represent polynomials succinctly

Circuits are *fully expressive*

They can also be *expressive-efficient*

 $3x_1x_2 + x_1x_3 + 6x_2^2 + 2x_2x_3$

$$p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

 $X_1 \quad X_2$

0

1

0

1

0

0

 $\frac{1}{1}$

 \mathbf{Pr}

.1

.2

.3

.4

$$p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$
$$\Pr[X_1 = 1]$$

 $X_1 \quad X_2$

0

1

0

1

0

0

 $\frac{1}{1}$

 \mathbf{Pr}

.1

.2

.3

.4

$$p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$

$$\Pr[X_1 = 1] = p(1, 1, 0, 1)$$

$$= .1(0)(1) + .2(0)(1) + .3(1)(1) + .4(1)(1)$$

$$= 0 + 0 + .3 + .4$$

$$= .7$$

 $7_{/20}$

 $7_{/20}$

 $7_{/20}$

Progress Update

Progress Update

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

Marginal inference?

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference? Relation to network polynomial?

$$p(x_1, x_2) = .2x_1 + .1x_2 + .1$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference? Relation to network polynomial?

Transform network to likelihood:

$$p(x,\bar{x}) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$

• Replace \bar{x}_i with $1 - x_i$

Transform likelihood to network:

Transform likelihood to network:

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)\left(.2\frac{x_1}{x_1 + \bar{x}_1} + .1\frac{x_2}{x_2 + \bar{x}_2} + .1\right)$$

Transform likelihood to network:

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2) \left(\frac{.2\frac{x_1}{x_1 + \bar{x}_1}}{.2x_1 + \bar{x}_1} + .1\frac{x_2}{x_2 + \bar{x}_2} + .1 \right)$$

= $.2x_1(x_2 + \bar{x}_2) + .1x_2(x_1 + \bar{x}_1) + .1(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)$

Transform likelihood to network:

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2) \left(\frac{2x_1}{x_1 + \bar{x}_1} + \frac{x_2}{x_2 + \bar{x}_2} + 1 \right)$$

= $2x_1(x_2 + \bar{x}_2) + 1x_2(x_1 + \bar{x}_1) + 1(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)$
= $p(x_1, x_2, \bar{x}_1, \bar{x}_2)$

Transform likelihood to network:

Transform likelihood to network:

Removing Divisions

Theorem (Strassen [1973]). You can remove divisions in polynomial time!

Removing Divisions

Theorem (Strassen [1973]). You can remove divisions in polynomial time!

Removing Divisions

Theorem (Strassen [1973]). You can remove divisions in polynomial time!

Transform likelihood to network:

Transform likelihood to network:

generatingfunctionology

Herbert S. Wilf

 $13_{/20}$

Monotone, decomposable circuits computing network polynomials (SPNs, PCs)

Monotone, decomposable circuits computing network polynomials (SPNs, PCs)

Circuits computing generating polynomials

^aMartens and Medabalimi [2015], Zhang et al. [2021]

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Marginal inference: \checkmark [Zhang et al., 2021]

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference: \checkmark [Zhang et al., 2021] Relation to network polynomial?

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

X_1	X_2	\Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

Marginal inference: \checkmark [Zhang et al., 2021] Relation to network polynomial?

Transform network to generating:

 $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$

• Replace \bar{x}_i with 1

Transform generating to network:

Fourier transform of the probability mass function

Fourier transform of the probability mass function

- Graphical model approximate inference
- Characteristic Circuits

Fourier transform of the probability mass function

- Graphical model approximate inference
- Characteristic Circuits

Proposition. Generating polynomials and Fourier polynomials compute the same function on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$.

Some New Semantics

X_1	X_2	\Pr	
0	1	.1	
1	3	.3	
3	2	.2	
:	:	:	

Literature: just use a binary encoding

X_1	X_2	\Pr
0	1	.1
1	3	.3
3	2	.2
÷	÷	÷

Literature: just use a binary encoding

X_1	X_2	Pr								
0	1	.1								
1	3	.3								
3	2	.2	g(x) =	$.1x_2$	+	$.3x_1x_2^3$	+	$.2x_1^3x_2^2$	$+\ldots$	
:	:	:								

Generating polynomial

Literature: just use a binary encoding

Theorem. For $|K| \ge 4$, computing likelihoods on a circuit for g(x) is #P-hard. Approach: Reduction from 0, 1-permanent.

Conclusion

What we've done:

- Shown several distinct circuit models are equally expressive-efficient
- Unified existing (and one new) inference algorithms
- Inference is #P-hard in generating polynomials circuits for $k \ge 4$ categories

Conclusion

What we've done:

- Shown several distinct circuit models are equally expressive-efficient
- Unified existing (and one new) inference algorithms
- Inference is #P-hard in generating polynomials circuits for $k \ge 4$ categories

What's next?

- How can this theoretical progress be leveraged in practice?
- Are there more expressive-efficient tractable representations?

Conclusion

What we've done:

- Shown several distinct circuit models are equally expressive-efficient
- Unified existing (and one new) inference algorithms
- Inference is #P-hard in generating polynomials circuits for $k \ge 4$ categories

What's next?

- How can this theoretical progress be leveraged in practice?
- Are there more expressive-efficient tractable representations?

Thank you! Questions?