Simulations of Ballot Polling Risk-Limiting Audits

Oliver Broadrick¹ Sarah Morin¹ Grant McClearn² Neal McBurnett Poorvi L. Vora¹ Filip Zagórski³⁴

¹Department of Computer Science, The George Washington University (odbroadrick@gmail.com)

²Department of Computer Science, Stanford University (grantmcc@stanford.edu)

³Wroclaw University of Science and Technology (filip.zagorski@gmail.com)

⁴Votifica

April 23, 2022

- Risk-Limiting Audits (RLAs)
 - ► BRAVO and MINERVA

Risk-Limiting Audits (RLAs)

- ► BRAVO and MINERVA
- Both are options in Arlo, statistical election audit software used by election officials across the US

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Risk-Limiting Audits (RLAs)
 - BRAVO and MINERVA
 - Both are options in Arlo, statistical election audit software used by election officials across the US

- Experiments: simulated 10000 = 10⁴ audits for various margins with both
 - a correctly announced outcome
 - an underlying tie

- Risk-Limiting Audits (RLAs)
 - BRAVO and MINERVA
 - Both are options in Arlo, statistical election audit software used by election officials across the US
- Experiments: simulated 10000 = 10⁴ audits for various margins with both
 - a correctly announced outcome
 - an underlying tie
- Observed: stopping probability, maximum risk, number of ballots

- Risk-Limiting Audits (RLAs)
 - BRAVO and MINERVA
 - Both are options in Arlo, statistical election audit software used by election officials across the US
- Experiments: simulated 10000 = 10⁴ audits for various margins with both
 - a correctly announced outcome
 - an underlying tie
- Observed: stopping probability, maximum risk, number of ballots
- Results:
 - \blacktriangleright $M_{\ensuremath{\mathrm{INERVA}}}$ requires fewer ballots over multiple rounds for both

- high stopping probability (0.90)
- Iow stopping probability (0.25)
- less advantage for the lower stopping probability

- Risk-Limiting Audits (RLAs)
 - BRAVO and MINERVA
 - Both are options in Arlo, statistical election audit software used by election officials across the US
- Experiments: simulated 10000 = 10⁴ audits for various margins with both
 - a correctly announced outcome
 - an underlying tie
- Observed: stopping probability, maximum risk, number of ballots
- Results:
 - $\blacktriangleright\,$ $M_{\rm INERVA}$ requires fewer ballots over multiple rounds for both

- high stopping probability (0.90)
- low stopping probability (0.25)
- less advantage for the lower stopping probability
- Discussion and Future Work

Scanners are used to tabulate ballots

Scanners are used to tabulate ballots

Cannot trust the machines: bugs, configuration errors, hacking

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Scanners are used to tabulate ballots
 - Cannot trust the machines: bugs, configuration errors, hacking

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Compliance and tabulation audits

- Scanners are used to tabulate ballots
 - Cannot trust the machines: bugs, configuration errors, hacking
- Compliance and tabulation audits
- Risk-Limiting Audits
 - Given that the election outcome is incorrect, the probability with which the audit stops, declaring the outcome correct, is at most the risk limit, α.

Is a manual audit, which relies on a voter-verified paper trail and successfully completed compliance audits

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Is a manual audit, which relies on a voter-verified paper trail and successfully completed compliance audits

- Sketch:
 - 1. Election results announced

- Is a manual audit, which relies on a voter-verified paper trail and successfully completed compliance audits
- Sketch:
 - 1. Election results announced
 - 2. In a public procedure, sample ballots at random and manually interpret them

- Is a manual audit, which relies on a voter-verified paper trail and successfully completed compliance audits
- Sketch:
 - 1. Election results announced
 - 2. In a public procedure, sample ballots at random and manually interpret them
 - 3. Compute a pre-specified error measure, the maximum risk, and compare to the risk limit

- If smaller, stop the audit
- Else, sample more (goto 2)

Most commonly used ballot polling RLA

- Most commonly used ballot polling RLA
- In the two candidate case is an instance of Wald's Sequential Probability Ratio Test (SPRT)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Most commonly used ballot polling RLA
- In the two candidate case is an instance of Wald's Sequential Probability Ratio Test (SPRT)
- Is thus the most efficient RLA when the decision of whether to stop the audit is made after each ballot is drawn (ballot-by-ballot)

- Most commonly used ballot polling RLA
- In the two candidate case is an instance of Wald's Sequential Probability Ratio Test (SPRT)
- Is thus the most efficient RLA when the decision of whether to stop the audit is made after each ballot is drawn (ballot-by-ballot)
- In real audits, decisions are taken after many ballots are drawn (round-by-round)

- Most commonly used ballot polling RLA
- In the two candidate case is an instance of Wald's Sequential Probability Ratio Test (SPRT)
- Is thus the most efficient RLA when the decision of whether to stop the audit is made after each ballot is drawn (ballot-by-ballot)
- In real audits, decisions are taken after many ballots are drawn (round-by-round)
- BRAVO can be implemented as:
 - Selection-Ordered (SO) BRAVO, where ballot selection order is retained, and the decisions are taken as though the audit were ballot-by-ballot
 - End-of-Round (EoR) BRAVO, where the decision using the BRAVO stopping rule is taken once, after the entire round of ballots is drawn

Recent RLA designed for round-by-round use

- Recent RLA designed for round-by-round use
- BRAVO uses the likelihood ratio; that is the ratio of points on two probability distribution functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Recent RLA designed for round-by-round use
- BRAVO uses the likelihood ratio; that is the ratio of points on two probability distribution functions
- ▶ MINERVA uses a ratio of the *tails* of the pdfs used in BRAVO

- Recent RLA designed for round-by-round use
- BRAVO uses the likelihood ratio; that is the ratio of points on two probability distribution functions
- ► MINERVA uses a ratio of the *tails* of the pdfs used in BRAVO
 - Shown to be risk-limiting if all round sizes are pre-committed, before the audit begins

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Recent RLA designed for round-by-round use
- BRAVO uses the likelihood ratio; that is the ratio of points on two probability distribution functions
- ▶ MINERVA uses a ratio of the *tails* of the pdfs used in BRAVO
 - Shown to be risk-limiting if all round sizes are pre-committed, before the audit begins
 - In a first round chosen to give a 0.90 probability of stopping, MINERVA requires

- ► 50% as many ballots as EoR BRAVO
- ► 70-80% as many ballots as SO BRAVO

- Recent RLA designed for round-by-round use
- BRAVO uses the likelihood ratio; that is the ratio of points on two probability distribution functions
- ▶ MINERVA uses a ratio of the *tails* of the pdfs used in BRAVO
 - Shown to be risk-limiting if all round sizes are pre-committed, before the audit begins
 - In a first round chosen to give a 0.90 probability of stopping, MINERVA requires

- 50% as many ballots as EoR BRAVO
- ► 70-80% as many ballots as SO BRAVO
- Unknown how the audits compare for smaller stopping probability or for rounds after the first

Use simulations to provide evidence for theoretical claims

- Use simulations to provide evidence for theoretical claims
- R2B2 software library for round-by-round and ballot-by-ballot RLAs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Use simulations to provide evidence for theoretical claims
- R2B2 software library for round-by-round and ballot-by-ballot RLAs
- Simulate RLAs for election results from the 2020 Presidential election (all margins above 0.05)
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was as announced
 - $\blacktriangleright~10000 = 10^4$ trials assuming the underlying election was a tie

- Use simulations to provide evidence for theoretical claims
- R2B2 software library for round-by-round and ballot-by-ballot RLAs
- Simulate RLAs for election results from the 2020 Presidential election (all margins above 0.05)
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was as announced
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was a tie

Risk limit: 10%

- Use simulations to provide evidence for theoretical claims
- R2B2 software library for round-by-round and ballot-by-ballot RLAs
- Simulate RLAs for election results from the 2020 Presidential election (all margins above 0.05)
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was as announced
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was a tie
- Risk limit: 10%
- Round schedules:
 - BRAVO round sizes to achieve a chosen probability of stopping in each round given that the audit has already reached that round

- Use simulations to provide evidence for theoretical claims
- R2B2 software library for round-by-round and ballot-by-ballot RLAs
- Simulate RLAs for election results from the 2020 Presidential election (all margins above 0.05)
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was as announced
 - ▶ $10000 = 10^4$ trials assuming the underlying election was a tie
- Risk limit: 10%
- Round schedules:
 - BRAVO round sizes to achieve a chosen probability of stopping in each round given that the audit has already reached that round
 - ▶ MINERVA first round sizes to achieve a chosen probability of stopping, and subsequent round sizes found by multiplying the previous round size by a constant (1.5 and 1)

- Use simulations to provide evidence for theoretical claims
- R2B2 software library for round-by-round and ballot-by-ballot RLAs
- Simulate RLAs for election results from the 2020 Presidential election (all margins above 0.05)
 - \blacktriangleright 10000 = 10⁴ trials assuming the underlying election was as announced
 - $\blacktriangleright~10000 = 10^4$ trials assuming the underlying election was a tie
- Risk limit: 10%
- Round schedules:
 - BRAVO round sizes to achieve a chosen probability of stopping in each round given that the audit has already reached that round
 - MINERVA first round sizes to achieve a chosen probability of stopping, and subsequent round sizes found by multiplying the previous round size by a constant (1.5 and 1)

Stopping probabilities: 0.90 and 0.25

Definition

An audit A takes a sample of ballots X as input and gives as output either (1) *Correct*: the audit is complete, or (2) *Uncertain*: continue the audit.

(ロ)、(型)、(E)、(E)、 E) のQの

Definition

An audit A takes a sample of ballots X as input and gives as output either (1) *Correct*: the audit is complete, or (2) *Uncertain*: continue the audit.

• Binary hypothesis test: H_0 (a tie) and H_a (announced results)

Definition

An audit A takes a sample of ballots X as input and gives as output either (1) *Correct*: the audit is complete, or (2) *Uncertain*: continue the audit.

• Binary hypothesis test: H_0 (a tie) and H_a (announced results)

The tie is the hardest incorrect outcome to detect

Definition

An audit A takes a sample of ballots X as input and gives as output either (1) *Correct*: the audit is complete, or (2) *Uncertain*: continue the audit.

• Binary hypothesis test: H_0 (a tie) and H_a (announced results)

- The tie is the hardest incorrect outcome to detect
- Probability of stopping given a tie should be low

Definition

An audit A takes a sample of ballots X as input and gives as output either (1) *Correct*: the audit is complete, or (2) *Uncertain*: continue the audit.

- Binary hypothesis test: H_0 (a tie) and H_a (announced results)
- The tie is the hardest incorrect outcome to detect
- Probability of stopping given a tie should be low
- Probability of stopping given a correctly announced outcome should be high for as few ballots as possible

Definition (Maximum Risk)

The maximum risk R of audit A with sample $X \in \{0,1\}^*$ drawn from the ballots is $R(A) = \Pr[A(X) = Correct \mid H_0]$.

Definition (Maximum Risk)

The maximum risk R of audit A with sample $X \in \{0,1\}^*$ drawn from the ballots is $R(A) = \Pr[A(X) = Correct \mid H_0]$.

Definition (Risk-Limiting Audit (α -RLA))

An audit \mathcal{A} is a Risk-Limiting Audit with risk limit α iff $R(\mathcal{A}) \leq \alpha$.

Definition (Stopping Probability)

The stopping probability S_j of an audit \mathcal{A} in round j is $S_j(\mathcal{A}) =$

 $\Pr[\mathcal{A}(X) = Correct \text{ in round } j \land \mathcal{A}(X) \neq Correct \text{ previously } | H_a]$

Definition (Stopping Probability)

The stopping probability S_j of an audit \mathcal{A} in round j is $S_j(\mathcal{A}) =$

 $\Pr[\mathcal{A}(X) = Correct \text{ in round } j \land \mathcal{A}(X) \neq Correct \text{ previously } | H_a]$

Definition (Cumulative Stopping Probability)

The cumulative stopping probability C_j of an audit A in round j is $C_j(A) = \sum_{i=1}^j S_j$

Definition (Stopping Probability)

The stopping probability S_j of an audit \mathcal{A} in round j is $S_j(\mathcal{A}) =$

 $\Pr[\mathcal{A}(X) = Correct \text{ in round } j \land \mathcal{A}(X) \neq Correct \text{ previously } | H_a]$

Definition (Cumulative Stopping Probability)

The cumulative stopping probability C_j of an audit \mathcal{A} in round j is $C_j(\mathcal{A}) = \sum_{i=1}^j S_j$

Definition (Conditional Stopping Probability)

The conditional stopping probability of an audit ${\mathcal A}$ in round j is $\chi_j({\mathcal A}) =$

 $\Pr[\mathcal{A}(X) = Correct \text{ in round } j \mid H_a \land \mathcal{A}(X) \neq Correct \text{ previously}]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proportion of Audits that Stopped by Round (Minerva (1x), Reported)

Proportion of Audits that Stopped by Round (Minerva (1x), Reported)

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Results: Risk ($\chi_1 = 0.9$)

Results: Risk ($\chi_1 = 0.9$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Results: Number of Ballots ($\chi_1 = 0.9$)

Results: Number of Ballots ($\chi_1 = 0.9$)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Results: Number of Ballots ($\chi_1 = 0.25$)

Stopping Probability for Number of Ballots Sampled [Texas: margin 0.057]

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

For $\chi_1 = 0.25$, the number of ballots required for MINERVA is smaller than that required by SO BRAVO and EoR BRAVO

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $\chi_1 = 0.25$, the number of ballots required for MINERVA is smaller than that required by SO BRAVO and EoR BRAVO

• Improvement considerably smaller than that when $\chi_1 = 0.9$

For $\chi_1 = 0.25$, the number of ballots required for MINERVA is smaller than that required by SO BRAVO and EoR BRAVO

- Improvement considerably smaller than that when $\chi_1 = 0.9$
- ► SO BRAVO:
 - ▶ for $\chi_1 = 0.9$ requires a third more than does MINERVA
 - \blacktriangleright for $\chi_1=0.25$ requires a tenth more than does $\rm Minerva$

For $\chi_1 = 0.25$, the number of ballots required for MINERVA is smaller than that required by SO BRAVO and EoR BRAVO

- Improvement considerably smaller than that when $\chi_1 = 0.9$
- ► SO BRAVO:
 - for $\chi_1 = 0.9$ requires a third more than does MINERVA
 - ▶ for $\chi_1 = 0.25$ requires a tenth more than does MINERVA
- ► EoR BRAVO:
 - for $\chi_1 = 0.9$ requires twice as many as MINERVA
 - ▶ for *χ*₁ = 0.25 requires a fourth to a half more (depending on margin) than does MINERVA

Results: MINERVA Stopping Probabilities

For $\chi_1 = 0.9$, MINERVA consequent conditional stopping probabilities for rounds two and three are respectively:

Results: MINERVA Stopping Probabilities

For $\chi_1 = 0.9$, MINERVA consequent conditional stopping probabilities for rounds two and three are respectively:

• with multiplying factor 1, $\chi_2 \approx 0.75$ and $\chi_3 \approx 0.74$

Results: MINERVA Stopping Probabilities

For $\chi_1 = 0.9$, MINERVA consequent conditional stopping probabilities for rounds two and three are respectively:

- with multiplying factor 1, $\chi_2 \approx 0.75$ and $\chi_3 \approx 0.74$
- with multiplying factor 1.5, $\chi_2 \approx 0.91$ and $\chi_3 \approx 0.83$

We describe use of the R2B2 library and simulator to characterize:

We describe use of the R2B2 library and simulator to characterize:

maximum risk,

We describe use of the R2B2 library and simulator to characterize:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- maximum risk,
- stopping probability, and

We describe use of the R2B2 library and simulator to characterize:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- maximum risk,
- stopping probability, and
- number of ballots

We describe use of the R2B2 library and simulator to characterize:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- maximum risk,
- stopping probability, and
- number of ballots
- for various round schedules.

- We describe use of the R2B2 library and simulator to characterize:
 - maximum risk,
 - stopping probability, and
 - number of ballots
 - for various round schedules.
- MINERVA requires fewer ballots than either implementation of BRAVO in all cases we study, but the advantage decreases for a smaller stopping probability for each round

Future Work

More detailed study of the impact of different round schedules

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Future Work

More detailed study of the impact of different round schedules

Simulations with other underlying distributions

Thank you

odbroadrick@gmail.com

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>