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ABSTRACT

Controlled language generation conditions text on sequence-level constraints (for
example, syntax, style, or safety). These constraints may depend on future to-
kens, which makes directly conditioning an autoregressive language model (LM)
generally intractable. Prior work uses tractable surrogates such as hidden Markov
models (HMMs) to approximate the distribution over continuations and adjust the
model’s next-token logits at decoding time. However, we find that these surro-
gates are often weakly context aware, which reduces query quality. We propose
Learning to Look Ahead (LTLA), a hybrid approach that pairs the same base
language model for rich prefix encoding with a fixed tractable surrogate model
that computes exact continuation probabilities. Two efficiency pitfalls arise when
adding neural context: (i) naively rescoring the prefix with every candidate next
token requires a sweep over the entire vocabulary at each step, and (ii) predict-
ing fresh surrogate parameters for each prefix, although tractable at a single step,
forces recomputation of future probabilities for every new prefix and eliminates
reuse. LTLA avoids both by using a single batched HMM update to account for
all next-token candidates at once, and by conditioning only the surrogate’s latent
state prior on the LM’s hidden representations while keeping the surrogate de-
coder fixed, so computations can be reused across prefixes. Empirically, LTLA
attains higher conditional likelihood than an unconditional HMM, approximates
continuation distributions for vision—language models where a standalone HMM
cannot encode visual context, and improves constraint satisfaction at comparable
fluency on controlled-generation tasks, with minimal inference overhead.

1 INTRODUCTION

Autoregressive models are the dominant way to represent high-dimensional discrete distributions
over language and sequence data (Grattafiori et al.,[2024; |Shin et al.,|2021)), factorizing the distribu-
tion into a sequence of next-token conditional distributions. Many useful queries, however, concern
properties of the entire sequence: to generate autoregressively under a sequence-level constraint,
we need the probability that the remaining suffix will satisfy that constraint given the current prefix
(Boyd et al., 2022;|Zhang et al., 2023)). Computing this probability requires reasoning over exponen-
tially many possible futures and is therefore intractable for standard autoregressive language models
(LM). In practice, estimates come from sampling (Qin et al.|[2022; [Hu et al.,[2023; [Lew et al.| |2023)),
which introduces significant computational overhead, or from learned heuristics (Krause et al., 2020;
Yang & Klein| 2021 Meng et al.| 2022)) that must be tailored to each query or constraint.

Tractable probabilistic models (TPMs) are a broad class of generative models that admit efficient
routines for exactly computing such conditional queries exactly and efficiently (Choi et al., 2020).
As such, a natural approach employed by prior works (Zhang et al.| 2023} |Yidou-Weng et al., [2025))
is to utilize TPMs as tractable surrogates to the LM, such that queries on the LM can be approx-
imated by computing them on the surrogate. However, we identify that current TPMs used for
language modeling, such as hidden Markov models (HMM), face two significant obstacles in this
setting. Firstly, we find empirically that HMMs are comparatively insensitive to the prefix, which
yields less accurate distributions over continuations, as illustrated in Fig.|l} Secondly, as models op-
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(a) Standard HMM (b) Neural-Encoded HMM (LTLA)

Figure 1: The encoder given by standard HMMs is often insensitive to information contained within
the context. In this example, we show an example with the context they fired the <x>
after just one, where <x> canbe coach or employee. The distribution is almost identical
for the standard HMM, while the neural HMM shows a significant shift in distribution (in particular,
with season and game being more likely when <x> = coach).

erating only over discrete sequences, they cannot effectively encode some kinds of context, notably
continuous multimodal features used by modern vision—-language models.

To encode the past well and answer future queries quickly, we separate the two jobs. Understanding
the past (“lookback™) should preserve as much information as possible, whereas forecasting the
future (“lookahead”) must remain tractable. The same base LM already builds a rich representation
of the prefix, which we reuse to encode the prefix into the tractable model (for example, a HMM)
that models and computes exact probabilities over continuations. In short, we propose a hybrid
tractable model where a transformer-based LM is used for lookback and a HMM for lookahead.

Making this hybrid model practical raises two concrete challenges. First, when autoregressively
generating the next token, a naive strategy would run the transformer on the prefix concatenated with
every candidate token across the vocabulary to assess how each affects the downstream conditional
query; this per-step sweep over the entire vocabulary is expensive (see “Exhaustive LM Rescoring”
in Table[I)). Second, conditioning the surrogate itself on the prefix by predicting fresh parameters for
every context remains tractable at a single step but prevents reuse: as the prefix grows, the surrogate
must be rebuilt and its future probabilities recomputed at every step, which increases decode-time
cost and memory (see “Prefix-Parameterized TPM” in Table[I}; cf. Sec.[3.1). Both issues undercut
the efficiency that makes TPMs attractive.

Thus, we propose a solution that encodes rich context with the transformer while maintaining TPM
efficiency by encoding the prefix only into the HMM surrogate’s latent prior and keeping the rest of
the HMM fixed. Specifically, the transformer’s hidden states are fed into to a lightweight head that
is trained to produce a prior over the surrogate’s latent state, and the observed next token x; is incor-
porated with a one-step HMM update as a single batched matrix—vector operation, avoiding separate
computation for each token in the vocabulary. With fixed transition and emission parameters, future
computations are reusable across steps, so conditional queries remain exact and fast even for long
sequence lengths (see “LTLA (Ours)” in Table[I)). We call this approach Learning to Look Ahead
(LTLA): it learns to injects context through the LM representation, while preserving tractability of
the lookahead model.

Our contributions can be summarized as follows:

1. We introduce LTLA, a novel approach for learning tractable surrogates to language models.
LTLA reuses the base language model to predict the prior of a HMM modeling continuations given
the current context, enabling accurate estimates of conditional queries at each time step of generation
while only using a small number of matrix-vector multiplications. We further show how LTLA can
be used to condition on multimodal context by leveraging vision-language models (VLM).



Table 1: Comparison of lookahead properties across models.

Model Tractable C'ontext AvYareness No Extra LM Reuse Surrogate Decoding
Lookahead (incl. multimodal) Calls per Step?  Precompute per Prefix? Overhead
LLM X _ _ _
Standard HMM X Low
Exhaustive LM Rescoring X X High
Prefix-Parameterized TPM X High
LTLA (Ours) Low

2. We propose different architectural choices for both the neural encoder and tractable decoder, and
investigate their effect on modeling performance, decoding overhead, and downstream performance.

3. Empirically, we show that LTLA achieves improved conditional log-likelihood compared with
existing tractable models, especially for the next few tokens. We also demonstrate the applica-
tion of LTLA to controlled-generation tasks for both language and vision—-language models, where
LTLA improves constraint satisfaction compared to existing approaches while adding only a small
inference-time overhead.

2 TRACTABLE MODELING OF SEQUENCES

In this work, we are interested in autoregressive sequence models, and how to effectively answer
queries about the distribution over sequences that they represent. An autoregressive model decom-
poses the distribution over a sequence of tokens z1.7 as follows:

T
p(rir) = [[ o). (1)
t=1

Queries Aside from generating or analyzing the next token distribution, we are often interested in
more complex properties of the distribution. These can be represented generally as conditional prob-
ability queries (Boyd et al.,2022), which ask for the probability p(«|x1.+) of some event o, where
x1.; is the prefix (or context) generated so far. Examples of events o might include the k™ token
T4k in the future taking a particular value, some token a appearing before token b in the sequence,
the expected length of the sequence generated, or more complex properties involving grammatical
or semantic constraints (Zhang et al., 2024} Yidou-Weng et al.l 2025; [Ahmed et al., 2025). What
these queries have in common is that they require looking into the future: that is, aggregating over
all possible continuations, weighted by their conditional probability given the context:

plalzr) = Y p(riprrler)plalers, T, 2

Ti41:T

One of the key downstream applications of conditional probability queries is controlled generation:
that is, generating from an autoregressive model conditional on some event «. In particular, observe
that, by Bayes’ rule, the distribution of the next token X; conditional on previous tokens and « is
given by:

P(Xt|r<t, @) o p(Xi|w<t) - plalw <y, Xt) 3)
As such, if one has access to an oracle for conditional probability queries, then it is possible to sam-
ple autoregressively from the conditional distribution by explicitly computing the terms in Equa-
tion 3] In practice, however, such an oracle is not available, and one must resort to approximations.

Estimating Conditional Probability Queries Consider the problem of estimating the conditional
probability query p(«|x1.¢) given in Equation The key tradeoff is between (i) the accuracy and (ii)
the computation cost of the estimation. Explicitly enumerating all such continuations would result
in an exact answer, but is clearly infeasible as the number of such continuations grows exponentially
with sequence length. As such, for most models, one typically needs to approximate, for example by
(i) using sampling-based techniques targeting the conditional continuation distribution (Qin et al.,
2022;Zhao et al., [2024} Loula et al.| [2025)); or (ii) directly approximating the conditional probability



query using a neural classifier or generative model specialized to the constraint o (Krause et al.,
20215 |Yang & Klein, [2021}; [Meng et al., 2022).

In this work, we consider an alternative, computationally efficient approach based upon tractable
modeling of continuations. This stems from the observation that, for certain distributions p and
queries «, the computation of p(«|z1.t) can be done both (i) exactly and (ii) efficiently, breaking
the tradeoff. In particular, tractable probabilistic models (TPMs) (Choi et al., 2020) are classes
of probabilistic generative models that are known to enable computationally efficient analytical
computation of many classes of queries, such as marginal probabilities.

Example 1 Hidden Markov models (HMMs) are tractable sequence models, that represent a joint

distribution over a sequence of T variables X1, Xo, ..., X1 each taking values in a size-V vocabu-
laryV =1{0,...,V — 1} with latent variables 71, Zs, . . . , Z each taking value in a discrete set of
hidden states H = {0, ..., H — 1} of size H. The parameters of an HUM are given by an emission

matrix q(x¢|2;) € REXY and a transition matrix q(z|z—1) € RZ}H. Then, the distribution of an

HMM is defined by ~
T

g(wr,..or) = Y qlz)a(@l=) [T atzlze)a(zdz).

2Z14.-32T t=2

HMMs enable efficient computation of various queries via (variants of) the forward and backward
algorithms. For example, if « is the event that the last token Xt = world, we can compute the
conditional query q(«|x1.¢) using the fact that (by conditional independence):

a(edere) = Y alzlrrdalalz). €y

Zt

where q(z¢|x1.¢) and q(|z;) can be computed using the forward and backward algorithms respec-
tively, which each take linear time in the sequence length. For instance, q(c|z;) can be computed
using the following recurrence relation backward in time:

glalzia) =Y a(zlz1)a(alz) o)

Zt

with base case q(a|zr) = q(xr = world|zr). Prior work has also shown that HMMs support
tractable querying of many other conditions a, including complex logical constraints{ﬂ( Zhang et al.|
2024} |2025b)) or factorized classifiers for semantic constraints (Yidou-Weng et al.| |2025)).

The distribution p we are interested in will typically not be tractable in this way. However, we can
aim to approximate the (prior) distribution p(z;1.7|21.+) using a simpler tractable surrogate model
q(zt41.7|71:+) for which conditional queries are tractable, and estimating p(a|z1.+) = q(a|z1.t)
using the tractable approximation q. This approach has been employed in prior works (Zhang et al.,
2023)) using HMMs as the TPM of choice, which has been shown to lead to state-of-the-art perfor-
mance on controlled generation benchmarks.

The Promise and Challenges of Tractable Surrogate Modeling Besides state-of-the-art empir-
ical performance on downstream applications, the tractable modeling approach offers a number of
other benefits related to computational efficiency. Firstly, it amortizes the cost across different con-
straints «. That is, since ¢ is trained to match the prior, and the computation of the query g(a|z1.¢)
is conducted using a symbolic algorithm, one does not need to commit in advance to any particular
condition . This is in contrast to approaches that train models to specifically target the posterior
p(T41.n|T1:4, ). Secondly, tractable models can amortize the cost across different contexts x1.; by
exploiting conditional independence. For example, in the HMM query computation in Equation 4]
the backward quantity g(«|z¢) can be precomputed and cached independently of the context 1 ..

This computational efficiency, however, also comes at a cost. The quality of the query estimate
provided by the tractable model depends significantly on the quality of the approximation of ¢ to
p, which in turn has been shown to affect downstream performance (Zhang et al., 2023 |Yidou-
Weng et al., [2025). Unfortunately, the class of tractable models (e.g., HMMs) is fundamentally

"more specifically, deterministic finite automata (DFA) or unambiguous context-free grammars (uCFG).



less expressive than e.g., neural autoregressive models (Choi et al.l 2019} [Broadrick et al.l [2025).
This is reflected in our observation in Figure |I} where a HMM trained to approximate a GPT2-
large language model is unable to effectively encode dependence on context x.; in its distribution
q(Tt41.n|T1:¢). As such, a key challenge is to improve the expressivity and learning performance of
the tractable model approximation, while maintaining the computational efficiency of the existing
HMM-based approximation. In the next section, we will present our approach, Learning To Look
Ahead (LTLA), which utilizes an amortized inference approach with a neural encoder to obtain the
tractable approximation q.

3 LEARNING TO LOOK AHEAD

To formalize our problem from first principles, suppose that we have a set of contexts {m(J ) ;V 1

and let Q be a class of tractable distributions over continuations (e.g. HMMs). Then our goal is

to infer, for each given context :c(ljz a distribution ¢¥) € Q over continuations 1., such that

¢ = p(-|2%1)), for example, by maximizing conditional log-likelihood

LL=E @) [10%% g (x4, T)] (6)

Tt41: ~p(c|

Unfortunately, in practice we cannot afford to optimize ¢(/) separately for every context acgjt), instead
we must take an amortized inference approach, in which we learn to predict g(x¢+1.7) given context
x1.¢. In particular, an HMM trained on the joint distribution over contexts and continuations can be
viewed as performing amortized inference by (i) applying a probabilistic encoder q(z¢|z1.t) € R>0
to predict the latent state distribution and (ii) parameterizing the distribution over continuations via
this latent state and the probabilistic decoder q(x¢41.7|2¢). Our key insight is that, for answering
queries about the continuation, we only need to be able to (i) evaluate the encoder and (ii) answer
queries about the decoder’s distribution. As such, only the decoder needs to be tractable, and we can
increase the expressivity of the continuation model by allowing the encoder to be an arbitrary neural
network gen., giving rise to the following hybrid model:

Ghypria (Te1.771:0) = D Gene(2t|71:0) @44 1:7|22) (7

Zt

We can then jointly train the encoder and decoder to maximize the expected log-likelihood over a

dataset of contexts and continuations {x@ , xt 1: T} By utilizing a more expressive encoder,

our hypothesis is that the log-likelihood of the hybrld model will improve upon the pure HMM, in
turn leading to better downstream performance.

We call our method Learning To Look Ahead (LTLA) as (i) we train a neural encoder to learn a
language model’s distribution over continuations, and (ii) we execute a symbolic algorithm to look
ahead over exponentially many continuations with a probability distribution given by the output of
the learned encoder. Although we only maintain the model’s tractability over the continuation tokens
T41.7, this is sufficient for downstream applications where tokens are generated autoregressively.
In the rest of this section, we will first describe the algorithms for and complexity of conditional
probability queries of interest, before discussing architectural choices for the neural encoder.

3.1 INFERENCE USING HYBRID HMMSs

After conditioning on a context x<¢, we obtain a tractable model of the distribution of continua-
tions ¢(x>¢|r<), rendering many natural queries exactly and efficiently computable. For example,
after observing a sequence x<;, we might ask the following questions: (i) what is the probability
that the sequence ends within the next k tokens; (ii) what is the probability that the sequence con-
tains a particular keyword; (iii) what is the probability that the generated sequence will be labeled
“toxic”/“biased”/etc by a given tractable classifier? In general, queries ¢(c|x<;), where « is some
subset of the possible continuations x>, can be written g(a|z<¢) = >°,  q(¥>¢|r<t){z>s € a}
where 1{x~; € a} is an indicator function of the membership of =, in a. So, to efficiently com-
pute g(a|z<,), it suffices to be able to multiply q(z>|x<,) by the indicator function for cv in such a
way that the summation remains tractable; general sufficient conditions are known for such tractable



multiplications (Darwiche & Marquis, 2002} |[Zhang et al., 2025b). More generally, tractable mod-
els also support other types of queries, including for example information-theoretic quantities like
entropies and divergences (Vergari et al., 2021; |Wang et al., 2024)).

Controlled Generation As a concrete application of the tractability of a neural-encoded HMM,
we consider the task of generated text conditioned on a (logical or semantic) constraint a. A nat-
ural decoding procedure is to sample autoregressively from the conditional distribution factored
by Bayes’ rule as Equation |3) where the first term p(xz;|x<;) is computed with the autoregressive
model, and the second term p(«|z<;) is computed with the tractable neural-encoded HMM serv-
ing as a proxy for the autoregressive model. As an example, we describe the case where « is the
event that the text is accepted by a given deterministic finite automaton (DFA); see Section [B] for
the definition of a DFA. We follow closely the algorithm Ctrl-G designed for unconditional HMMs
(Zhang et all 2024). Given a DFA M, let S; be the random variable representing the state of M
after reading x<; sampled from p(z<|). Then,

plalr<) = plale<)p(olz, v<) = Y plzile<)p(alz, si) ®)

where the first equality follows from the law of total probability, and the second from the Markov
properties of HMMs and DFAs and the fact that s; is fully determined by x<;. The term p(z;|z<;)
may be estimated by the neural encoder. In practice, to avoid evaluating the neural encoder V' times,
once for each candidate next token x, we instead evaluate the encoder once to compute p(z;—1 |z <)
and then perform a single HMM forward step to obtain p(z;|z<,) for each ;.

Then, observe that the term p(c|z¢, s;) is entirely independent of the context z<;, and so all TV H
such probabilities p(«a|z¢, s¢) can be precomputed and stored in a lookup table (before decoding);
there is an efficient backward-style algorithm for this computation (Zhang et al.| 2024). Finally
p(a]z<y) is computed by the aggregation in Equation . Similar approaches work for other con-
straints. TRACE is a similar algorithm derived by |Yidou-Weng et al.[(2025) for the case where the
constraint is an attribute s predicted by a fully factorized probabilistic classifier p(s|z1.y,).

Complexity We emphasize an advantage to changing only the encoder of the HMM. Specifically,
we contrast neural-encoded HMMs with an alternative wherein a neural network predicts, given a
context x<¢, fresh parameters of a full HMM. With such full conditioning, the backward computa-
tion of p(«a|z¢, s¢) can no longer be precomputed but needs to be carried out at each step of decoding
on the freshly predicted HMM, resulting in a decoding time that scales quadratically in sequence
length. Moreover, fresh HMM parameters are needed for each context, resulting in an additional
blowup in a memory with batch size. The time and space complexities for training and inference of
standard HMMs, neural-encoded HMMs, and full conditional HMMs are summarized in Section
We use the parameter 7 for the complexity of a single HMM forward (or backward) step (always
assuming 7 = Q(hV))); for standard (dense) transition and emission matrices, 7 = O(h? + hV).

3.2 ARCHITECTURE

We now specify the architectural designs for our hybrid model, which includes two components: the
HMM decoder and the neural network encoder.

3.2.1 STRUCTURED SPARSITY

The main parameter controlling the expressivity of an HMM is its hidden size, the number of
states of each latent variable. Specifically, for any index ¢ an HMM forms a Markov chain
X1 = Zy — X4, and so any dependence of the continuation on the context must ‘flow through’
the latent state. Indeed, we can show that the logarithm of the hidden size is an upper bound on
the mutual information between the context and continuation. Denoting the mutual information be-
tween A and B by I(A; B), the entropy of A by H(A), and the support of A by supp(A), we have
the following.

Proposition 1 For any Markov chain X . — Z; — X>4, we have

I(X<y; X>¢) < H(Zy) < log|supp (Zy)].



(a) Learnable linear mapping. (b) Learnable Transformer layer. (c) Finetune Transformer.
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Figure 2: Neural architectures for neural-encoded HMMs: (a) frozen Transformer with linear map-
ping, (b) frozen Transformer with additional learnable layer, (c) fully finetuned Transformer.

This bound (proven in Section [A) holds regardless of the encoder p(z;|x <) or decoder p(x>¢|z),
i.e., it holds for standard HMMs as well as neural-encoded HMMs. Although Proposition[2]provides
a strong motivation for increasing the hidden size H to improve the model’s capacity, the number of
parameters in an HMM with dense transition and emission matrices grows quadratically in hidden
size. Therefore, we also consider using Monarch matrices (Dao et al., [2022), structured matrices
that require polynomially fewer parameters in the hidden size yet can still express complex, high-
rank matrices, which have been used for scaling tractable models (Zhang et al., 2025a). Monarch
matrices for the transition and emission matrices in an HMM use a combined O(h3/? + h'/2V) set
of parameters, giving a single-step complexity of 7 = O(h*/2 + h1/2V).

3.2.2 NEURAL NETWORK ARCHITECTURES

Another key factor that determines the performance of neural-encoded HMMs is the choice of the
neural network. Aside from achieving better conditional log-likelihoods, we want the neural encoder
to be as lightweight as possible to minimize the computational overhead in downstream applications.
One way to achieve this is by reusing the same neural network backbone of existing autoregressive
sequence models (e.g., LLMs) and adding minimal modules on top of them.

Figure 2] illustrates the three neural architectures we adopted. The first one (in sub-figure (a)) keeps
the (causal) Transformer backbone frozen and only adds a learnable linear mapping on top of its
last hidden embedding to predict the latent variable distribution p(z;|z<;). In downstream applica-
tions, the Transformer embeddings are already computed, so we only add a negligible overhead of
running the linear layer. The second variant (in sub-figure (b)) extends the frozen Transformer with
an additional learnable Transformer layer before the output linear mapping, which strikes a better
balance between the expressiveness of the encoder and the computational overhead. The third de-
sign (in sub-figure (c)) fully finetunes the Transformer backbone together with the linear prediction
layer. While this variant has the largest number of trainable parameters, it also provides the most
flexibility to tailor the representation for the HMM.

4 EXPERIMENTS

Datasets In our experiments, we utilize datasets consisting of data sampled from LLMs. Our
main evaluation is on datasets from GPT2-large, GPT2-large finetuned for CommonGen, and
Qwen2.5-VL-2B. For each of these datasets, we unconditionally sample sequences of length
T = 32, and uniformly at random choose a split position in the sequence to construct context
and continuation pairs of variable length.

Methods and Baselines In the distillation performance experiments, we primarily compare our
neural HMMs to corresponding HMMs in terms of their performance in modeling continuations.
For reference, we also compare to HMMs trained using the method of |[Lee & Berg-Kirkpatrick
(2025). In the controlled generation benchmarks, we compare LTLA with the standard HMMs used
in Ctrl-G, in order to show the benefits of the neural encoder, and with prompting and sampling
baselines for the novel VLM detoxification setting.

Research Questions The key research questions we seek to investigate are as follows. (RQ1) Do
neural HMMs achieve better modeling performance compared to standard HMMs, and if so, in what
way? (RQ?2) How does the choice of neural encoder architecture affect these results? (RQ3) Do any
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Figure 3: Perplexity of neural-encoded HMMs and baseline HMM for varying hidden sizes with
dense transition and emission matrices on the left, Monarch matrices on the right.
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Figure 4: Perplexity of (Monarch) HMMs vs neural HMMs on the GPT2-large dataset for different
continuation lengths.

gains in terms of modeling performance translate to improvements in downstream benchmarks via
LTLA? (RQ4) Can neural HMMs effectively condition on multimodal context data?

4.1 DISTILLATION PERFORMANCE & ANALYSIS

Figure [3| reports the scaling behavior of neural-encoded HMMs compared to standard HMM base-
lines. The a-axis refers to the hidden size of the HMM. Across both dense and Monarch parameter-
izations (as introduced in Section 3.2.T), augmenting HMMs with neural components consistently
reduces perplexity relative to the baseline. Across the three neural architectures, adding a trainable
Transformer layer (i.e., Figure 2{b)) or finetuning GPT (i.e., Figure 2fc)) achieves stronger perfor-
mance compared to the learnable linear layer. These results demonstrate that neural HMMs scale
favorably with hidden dimension, leading to better conditional log-likelihood per token/perplexity.
In Figure ] we further see that the neural encoder achieves better perplexity particularly for shorter
continuation lengths, which is to be expected as the first few tokens have the strongest dependence
on the context and are where the neural encoder has the most direct effect.

In terms of the architectural choices, both adding a transformer layer and finetuning the full GPT
model lead to greater improvements in perplexity compared to using a linear head, at the cost of
additional compute. In terms of the HMM architecture, the results show that, perhaps surpisingly,
the larger hidden sizes of Monarch HMMs did not perform significantly better when normalized for
compute. For instance, the Monarch HMM with size 16384 uses theoretical compute comparable to
the Dense HMM with hidden size 1024, but does not show significantly better perplexity.

For reference, we also compared to the method of [Lee & Berg-Kirkpatrickl (2025), who conduct
an empirical analysis of techniques designed to improve the learning dynamics of HMM language
models, and suggest utilizing a neural reparameterization (Chiu & Rush,|[2020) combined with latent



Table 2: Generation quality of HMM variants on the CommonGen benchmark using Ctrl-G.

Model BLEU-4 Cider Rougel. Avg. Perplexity(|) Max Perplexity (])
Max Sequence Length 20

Standard HMM 0.301 1.552 0.448 39.59 1569.51
HMM with Linear NN 0.303 1.566 0.448 41.99 1458.38
HMM with Transformer Block 0.297 1.536 0.446 36.24 616.73

Max Sequence Length 32

Standard HMM 0.303 1.566 0.448 36.00 1569.51
HMM with Linear NN 0.311 1.566 0.448 34.16 671.88
HMM with Transformer Block 0.305 1.573 0.448 33.98 1065.47

variable distillation (Liu et al.| 2023). Contrary to their findings, we found that this worsens perfor-
mance over standard training in our distillation setting. In particular, we found that the performance
of the HMM is quite sensitive to the hyperparameters of the AdamW optimizer, but by choosing
appropriate hyperparameters it outperforms the neural parameterization and LVD.

4.2 CONTROLLED GENERATION

LTLA delivers (i) improved distillation quality and (ii) compatibility with autoregressive models
beyond the reach of a standalone TPM. The stronger predictive fit of our neural-encoded HMMs
translates into better performance on standard LLM controlled-generation benchmarks. In addition,
LTLA’s flexible design allows us to extend this tractable lookahead approach to VLMs. For VLM
image captioning, LTLA uses its tractable lookahead to compute the probability of a future semantic
property (i.e. toxicity) that is then used to reweight the VLM’s original next-token distribution. In
our experiments, this approach outperforms sampling-based and heuristic controllers with negligible
inference overhead. We demonstrate versatility across two comprehensive constraint families—hard
logical constraints and soft semantic attributes—using the established Ctrl-G (Zhang et al., 2024)
and TRACE (Yidou-Weng et al.| 2025) frameworks. By conditioning the TPM on transformer pre-
fixes and learning to look ahead better, LTLA improves constraint satisfaction while maintaining the
base model’s fluency and diversity.

Logical Constraints We enforce hard constraints (keywords, propositions) by combining the
tractable lookahead model with deterministic finite automata (DFAs) in the Ctrl-G framework
(Zhang et al.l |2024). We distill both standard HMMs and LTLA variants from a GPT-2 model
fine-tuned on CommonGen. For each keyword set, we construct a DFA that accepts only sequences
satisfying the constraints, then run Ctrl-G beam search (128 beams) and select the top hypothesis
by base-LM log-likelihood. We evaluate against references using BLEU-4, CIDEr, and ROUGE-L,
and report average and maximum perplexity for fluency.

As shown in Table[2} LTLA leads to significant improvements in generation quality under hard con-
straints. Neural HMMs not only demonstrate consistent syntactical gains over the standard HMM
across metrics including BLEU-4, Cider, and RougeL, but also achieve significant fluency gains by
dramatically reducing perplexity, slashing the maximum perplexity by more than half. This suggests
that the neural encoders are highly effective at providing more context-aware guidance for the Ctrl-G
framework to satisfy constraints without forcing the model to generate unnatural sequences.

Semantic constraints in VLMs. We introduce a plug-and-play tractable lookahead for VLMs,
compatible with autoregressive decoders where a standalone TPM is ill-suited. LTLA enforces soft
constraints such as style (emotion, sentiment) and topicality with only the addition of a log-linear
classifier, making it extremely lightweight and adaptable for new constraints. We adopt TRACE
(Yidou-Weng et al 2025) to detoxify image captioning on the Hateful Memes dataset (Kiela et al.,
2020).

Concretely, we distill LTLA from Qwen2-VL-Instruct-2B and pair it with a log-linear toxicity model
trained on RealToxicityPrompts (Gehman et al.|[2020), scored with the Perspective API (Lees et al.,
2022). The predicted future toxicity reweights the next-token distribution during decoding, provid-
ing probabilistic guidance without architectural changes.



Table 3: Toxicity vs. fluency across methods. Lower is better.

Method Avg. toxicity (|) Avg. max toxicity (]) Perplexity ()
Vanilla 0.087 0.249 2.359
Neural Monarch HMM 0.064 0.188 3.564
Prompting 0.078 0.224 2.463
Sampling 0.097 0.309 43.142

Baselines. We compare against (i) default Qwen generation, (ii) prompt engineering with “Avoid
any toxic, offensive, or hateful language.”, and (iii) Monte Carlo sampling that reweights tokens
using the mean sampled toxicity of N continuations per step.

Results. As shown in Table 3] LTLA achieves the strongest detoxification while preserving fluency.
Under a comparable compute budget, the Monte Carlo (MC) baseline was capped at k=1 reweight-
ing pass per step, which still ran at approximately 10x the LTLA decoding time. Both methods
reweight continuations to approximate the same future-toxicity query, MC by sampling and LTLA
via a tractable predictive surrogate, but at equal budget the MC estimator is high variance and costly,
yielding higher toxicity and lower fluency..

5 RELATED WORK AND CONCLUSION

We study the problem of computing conditional queries on autoregressive sequence models (Boyd
et al.| 2022)), which has many existing approaches, especially for constrained generation (Qin et al.,
2022;|Hu et al., |2023; [Lew et al.| [2023} Krause et al.,|[2020; |Yang & Klein, |2021;[Meng et al.| |2022).
We follow a recent line of work, proposing a method based around tractable modeling (Zhang et al.,
2023} |2024; [Yidou-Weng et al., [2025)), adopting hidden Markov models as our primary structure
(Rabiner & Juang|, 2003} |Chiu & Rush}2020; Lee & Berg-Kirkpatrick, [2025). Our amortized infer-
ence technique of neurally conditioning on context is similar to hybrid neural and tractable models
in other settings (Shao et al., [2020; [Dos Martires| |2024). Our work complements existing research
in tractable modeling, that aims to scale tractable models in practice (Loconte et al., {2024} |Liu et al.,
2024} Maene et al.| [2025; [Wang & Van den Broeckl [2025) while characterizing theoretical limits
(Zhang et al.| [2021}; Blaser} 2023} |[Harviainen et al.,|2023; Broadrick et al., [2024).

In conclusion, we proposed Learning to Look Ahead (LTLA), a novel approach to modeling and
probabilistically reasoning about language model continuations using tractable models. LTLA uses
a neural encoder to predict the latent state of a tractable hidden Markov model, enabling more
accurate dependence on the context while maintaining the tractability and computational efficiency
of the approach. Empirically, we show that LTLA significantly boosts the perplexity of tractable
models over the prior state-of-the-art, particularly for shorter continuation sequences, and improved
performance on controllable generation benchmarks.
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A  PROOFS

We provide a proof of Proposition [2} restated here for convenience.

Proposition 2 For any Markov chain X oy — Z; — X>4, we have

I(X<t; X>1) < H(Zy) < log |supp (Z¢)]-
Pl"OOf: We have I(X<taXZt) S I(X<t,Zt) = H(Zt) — H(Zt | X<t) S H(Zt) The first
inequality is the ‘data processing inequality’ (e.g., proved via the chain rule of mutual information),

the equality is a standard identity that follows from definitions, and the final inequality holds because
entropies are nonnegative. ]

B DFAs

We give a formal definition of a deterministic finite automaton.

Definition 1 A deterministic finite automaton (DFA) is a tuple M = (Q, %, 0, qo, F), where Q is a
finite set of states, . a finite set of symbols, § : Q X ¥ — Q a transition function, qq an initial state,
and F C Q a set of accept states. A string of tokens wiws . . . wy, is accepted by M if there exists a
sequence of states qo, q1, - - - , qn such that ¢; = 6(qi—1,w;) for 1 <i <mnandgq, € F.

C COMPLEXITIES

Standard Neural-Encoded  Full Conditioning
HMM HMM HMM
Training  Time | O(Bn(t + s)) O(Bn(t + 9)) O(Bn(nt +9))
Space | O(n(v + B)) O(n(v + B)) O(Bnr)

(
(
Cul-G Time | O(Bn(tm +s)) O(Bn(tm+s)) O(Bn(ntm + s))
Space | O n(vm+ B))  O(n(vm + B))
TRACE Time | O(Bn(1 + s)) O(Bn(t +s)) O(Bn(nt + s))
Space | O(n(v + B)) O(n(v+ B)) O(Bnr)

Table 4: Time and space complexities of training and constrained generation algorithms with hybrid
HMM variants. The parameters are generation length n; vocabulary size V'; batch size B; HMM
single-step complexity 7; number of edges m in the DFA (for Ctrl-G); and time s for a single
evaluation of the neural model.
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