
The Limits of Tractable Marginalization

Oliver Broadrick * 1 Sanyam Agarwal * 2 Guy Van den Broeck # 1 Markus Bläser # 2

Abstract
Marginalization – summing a function over all
assignments to a subset of its inputs – is a funda-
mental computational problem with applications
from probabilistic inference to formal verifica-
tion. Despite its computational hardness in gen-
eral, there exist many classes of functions (e.g.,
probabilistic models) for which marginalization
remains tractable, and they can be commonly ex-
pressed by polynomial size arithmetic circuits
computing multilinear polynomials. This raises
the question, can all functions with polynomial
time marginalization algorithms be succinctly ex-
pressed by such circuits? We give a negative an-
swer, exhibiting simple functions with tractable
marginalization yet no efficient representation by
known models, assuming FP ̸= #P (an assump-
tion implied by P ̸= NP). To this end, we identify
a hierarchy of complexity classes corresponding
to stronger forms of marginalization, all of which
are efficiently computable on the known circuit
models. We conclude with a completeness result,
showing that whenever there is an efficient real
RAM performing virtual evidence marginaliza-
tion for a function, then there are small circuits
for that function’s multilinear representation.

1. Introduction
Marginalization is a fundamental computational problem.
In machine learning for example, many architectures are
designed around an instance of marginalization. In Bayesian
learning (e.g., Bayesian neural networks), model parameters
are marginalized to obtain a posterior distribution; vari-
ational autoencoders approximate a marginalization over

*,#Equal contribution. 1Department of Computer Sci-
ence, University of California, Los Angeles, United States
2Department of Computer Science, Saarland University,
Saarbrücken, Germany. Correspondence to: Oliver Broadrick
<odbroadrick@gmail.com>, Sanyam Agarwal <agarwal@cs.uni-
saarland.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

their latent space; autoregressive and discrete diffusion mod-
els are trained to predict (conditional) marginal probabilities
(Kingma et al., 2019; Bishop & Bishop, 2023). In the case
of boolean valued functions, marginalization corresponds
to the well known task of model counting, with applica-
tions from formal verification to cryptography (Gomes et al.,
2021; Arteta et al., 2016).

Unfortunately, marginalization is a notoriously hard prob-
lem in general. As models become increasingly expressive-
efficient, able to succinctly express larger classes of distribu-
tions, they often sacrifice the tractability of marginalization
(Cooper, 1990; Roth, 1996). However, there is a vast body
of work aimed at identifying classes of functions for which
efficient marginalization remains tractable, including well
known probabilistic models like hidden Markov models,
determinantal point processes, and probabilistic circuits in
general, as well as logical representation languages like d-
DNNF (Rabiner & Juang, 1986; Kulesza et al., 2012; Choi
et al., 2020; Darwiche, 2001). Moreover, a recent line of
work has shown how known models with tractable marginal-
ization can be commonly viewed as arithmetic circuits com-
puting multilinear polynomials, resulting in a unified model
that we formalize as uniform finally multilinear arithmetic
circuits (UFMACs) (Zhang et al., 2020; 2021; Agarwal &
Bläser, 2024; Broadrick et al., 2024b).

The fact that known functions with tractable marginaliza-
tion can be expressed by polynomial size UFMACs begs
the question. Do all probability distributions over binary
random variables with tractable marginalization have poly-
nomial size (uniform) finally multilinear arithmetic circuits?
A positive answer to this question would show that the
long line of work on tractable models has successfully ar-
rived at a maximally expressive-efficient modeling language
for tractable marginalization. We give a negative answer,
suggesting the possibility of yet more expressive-efficient
tractable models.

To rigorously answer this question, we define the tractability
of marginalization for a function in terms of its polynomial
time computability. Then, we observe that functions with
UFMACs are actually tractable for more powerful forms
of marginalization than standard variable marginalization.
Specifically, we show that UFMACs support tractable sum-
mation over inputs of a given Hamming weight (Section 4)

1

The Limits of Tractable Marginalization

USMAC

d-DNNFs, SPNs

UFMAC

DPPs, PGCs

PVM PHM PM FP

faff

verifiers

Figure 1. Relationships between complexity classes for tractable marginalization. UFMAC contains functions efficiently expressible
using known tractable models including determinantal point processes (DPPs) and probabilistic generating circuits (PGCs) as well as the
subclass USMAC containing for example, deterministic decomposable negation normal forms (d-DNNFs) and sum product networks
(SPNs). PM is the set of all functions with polynomial time marginalization. PHM and PVM consist of functions that are tractable for
Hamming weight marginalization and virtual evidence marginalization respectively (see Sections 4 and 5). We exhibit the function faff

which is contained in PM\PHM assuming FP ̸= #P. FP is the class of polynomial time computable functions, included for context.

and support marginalization in the presence of virtual ev-
idence (Section 5). We show that the class of functions
tractable for each of these queries form a hierarchy of inclu-
sions, and we prove that certain inclusions are strict by ex-
hibiting separating functions assuming standard complexity-
theoretic conjectures (i.e., P ̸= NP): see Figure 1 for a
visual summary. This reveals distributions that are tractable
for marginalization but cannot be computed by a UFMAC,
answering our central question.

While it turns out that not all distributions with tractable
marginalization can be expressed by UFMACs, we then
ask the corresponding question for the stronger forms of
marginalization. We find that UFMACs are complete for
tractable virtual evidence marginalization in the real RAM
model of computation in the sense that if there is a polyno-
mial time real RAM that performs virtual evidence marginal-
ization for a function, then the function has UFMACs.

2. Tractable Arithmetic Circuits
Classical probabilistic models like hidden Markov models
(Rabiner & Juang, 1986) and Chow-Liu trees (Chow & Liu,
1968) have efficient algorithms for marginalization based
on sums and products of probabilities. For general graph-
ical models this remains true, albeit with the caveat that
the efficiency of the algorithm depends on the underlying
graph structure. In the nineties, it was observed that such
algorithms naturally correspond to the computation of cer-
tain multilinear polynomials (Castillo et al., 1995; Darwiche
& Provan, 1997). Actually, a direct representation of such
a polynomial can be exponentially more succinct than an
equivalent graphical model (Roth & Samdani, 2009), and so
recent tractable probabilistic models have focused on repre-
senting the underlying polynomial as an arithmetic circuit, a
computation graph consisting of sums and products. Known
models with tractable marginalization can be viewed in this

common language, including bounded-treewidth graphical
models (Chow & Liu, 1968; Meila & Jordan, 2000; Rabiner
& Juang, 1986; Koller, 2009), determinantal point processes
(Kulesza et al., 2012), probabilistic sentential decision dia-
grams (Kisa et al., 2014), sum-product networks (Poon &
Domingos, 2011), cutset networks (Rahman et al., 2014),
characteristic circuits (Yu et al., 2024), and probabilistic
generating circuits (Zhang et al., 2021; Harviainen et al.,
2023; Bläser, 2023; Broadrick et al., 2024a). In this section,
we formalize the unified tractable model as finally multilin-
ear arithmetic circuits (UFMACs). A UFMAC expresses
a function f : {0, 1}n → Q by its multilinear polynomial
and represents the polynomial by an arithmetic circuit.

2.1. Multilinear Polynomials

Consider a function f : {0, 1}n → Q. Among infinitely
many polynomials that compute f on {0, 1}n, there is a
unique multilinear polynomial (a fundamental object; for
example, see O’Donnell (2014)). A polynomial is multi-
linear if its degree in every individual variable is at most
one. The unique multilinear polynomial computing f can
be found by interpolation:

p(x1, . . . , xn) =
∑
S⊆[n]

f(vS)
∏
i∈S

xi

∏
i/∈S

(1− xi)

where [n] = {1, 2, . . . , n} and vS denotes the characteristic
vector of the set S, that is, the element of {0, 1}n with ith
entry 1 for i ∈ S and ith entry 0 for i /∈ S. It turns out
that the tractability of marginalization for a function f can
be characterized to some extent in terms of the ability to
evaluate its multilinear polynomial p on elements of Qn

beyond just {0, 1}n, as we will see in Sections 3 to 5.

2

The Limits of Tractable Marginalization

2.2. Arithmetic Circuits

Arithmetic circuits are a thoroughly studied model for
the computation of polynomials, an algebraic analogue to
boolean circuits: see Shpilka et al. (2010) and Saptharishi
(2015) for surveys.

Definition 2.1 (Arithmetic Circuits). An arithmetic circuit
over a field F in variables X is a directed acyclic graph.
A node with in-degree 0 is an input node and is labeled
with an element in F or X . All other nodes are sum or
product nodes, labeled accordingly by + or ×. The node
with out-degree 0 is the output node.1

Each node in an arithmetic circuit computes a polynomial:
(i) each leaf computes the polynomial by which it is la-
beled, (ii) each sum node computes the sum of the poly-
nomials computed by its children, and (iii) each product
node computes the product of the polynomials computed by
its children. The polynomial computed by a circuit is the
polynomial computed by its output node.

Classes of arithmetic circuits that compute multilinear poly-
nomials are themselves well studied (Nisan & Wigderson,
1996; Raz, 2009; Raz et al., 2008). A circuit is called syn-
tactically multilinear if every product node has the property
that its children mention disjoint sets of variables. An arith-
metic circuit is called (semantically) multilinear if every
node in the circuit computes a multilinear polynomial. How-
ever, there exist multilinear polynomials for which the only
known polynomial size circuits do not conform to either of
these (syntactic or semantic) multilinearity properties. One
notable example is the determinant, a multilinear polyno-
mial central to determinantal point processes (Kulesza et al.,
2012), a popular tractable probabilistic model.

2.3. Uniform Finally Multilinear Arithmetic Circuits

In this work we consider a class of arithmetic circuits com-
puting multilinear polynomials with (minimal) restrictions
to guarantee efficient evaluation by a uniform algorithm,
general enough to express known probabilistic models with
tractable marginalization. In particular, while syntactically
and semantically multilinear circuits force all internal nodes
to compute multilinear polynomials, we allow intermediate
nodes to accumulate higher degree in each variable. How-
ever, if intermediate degrees are allowed to grow arbitrarily,
then the circuits can compute polynomials like x2n + 22

n

which cannot be efficiently evaluated (in polynomial time).
We thus strike a balance, defining finally multilinear arith-
metic circuits whose internal nodes compute polynomials of
polynomially bounded degree, high enough to allow flexible
algorithms like determinants, but low enough to guaran-
tee polynomial time evaluation of the circuit at rational

1We consider arithmetic circuits with a single output node,
though in general they can have multiple.

points. Indeed, it is an open question whether polynomials
like the determinant can be efficiently computed without
this additional flexibility (Shpilka et al., 2010, Open Prob-
lem 3). In the following we deal with families of circuits
(Cn)n=1,2,... = (C1, C2, . . .) with each Cn a circuit, often
using (Cn) as shorthand for (Cn)n=1,2,....

Definition 2.2 (Finally Multilinear Circuits). The arithmetic
circuit family (Cn) is finally multilinear if for n = 1, 2, . . .,

• Cn computes a multilinear polynomial, and

• after replacing each of the constants in Cn,
c1, . . . , ck ∈ F, by fresh variables z1, . . . , zk, the poly-
nomial computed by any internal node (in variables
x1, . . . , xn, z1, . . . , zk) has total degree at most poly-
nomial in n.

The only additional restriction needed to ensure that a cir-
cuit family can be efficiently evaluated at rational points is
uniformity, which requires that there be an efficient method
for obtaining a description of any circuit from the family.
Uniformity rules out the unrealistic power of nonuniform cir-
cuit families which can, for example, compute undecidable
languages.

Definition 2.3 (Uniform Circuits). An arithmetic circuit
family (Cn)n=1,2,... is uniform if there exists a polynomial
time Turing machine which on input 1n outputs Cn (in some
reasonable fixed representation: see Appendix A.1).

We note that if an arithmetic circuit family (Cn) is uniform,
then (Cn) is of polynomial size (since time bounds space).
Definitions 2.2 and 2.3 together provide sufficient conditions
for a circuit to be efficiently evaluated at rational points.

Lemma 2.4. Let (Cn) be a uniform finally multilinear arith-
metic circuit family. Then there exists a polynomial time
Turing machine which on input x1, x2, . . . , xn ∈ Q com-
putes Cn(x1, x2, . . . , xn).

The efficient evaluation algorithm promised by Lemma 2.4
is simple: on input n rationals, first obtain the circuit Cn

by uniformity, and then evaluate it in the natural way. We
give the full proof that this is guaranteed to take polynomial
time in Appendix A.2. The class of functions whose multi-
linear polynomial is computable by uniform finally multi-
linear arithmetic circuits constitutes the class of functions
for which efficient marginalization algorithms are currently
known, and thus the class of circuits central to this paper.

Definition 2.5 (The Class UFMAC). A function family (fn)
with2 fn : {0, 1}n → Q is in UFMAC if there exists a uni-
form finally multilinear arithmetic circuit family computing
the family of multilinear representations of (fn).

2Note that fixing an encoding Q → {0, 1}∗ allows functions
{0, 1}n → Q to be viewed as functions {0, 1}n → {0, 1}∗.

3

The Limits of Tractable Marginalization

X1 X2 X3 f
0 0 0 0.05
1 0 0 0.15
0 1 0 0.1
1 1 0 0.3
0 0 1 0.06
1 0 1 0.18
0 1 1 0.04
1 1 1 0.12

×

+
+

××

+ ++

x1 1 x2 x3

0.020.05

2

−13
−1

p(x1, x2, x3) = .1x1 + .05x2 + .1x1x2 + .01x3 − .07x2x3 + .02x1x3 − .14x1x2x3 + .05

p̄(x1, x̄1, x2, x̄2, x3, x̄3) = 0.05x̄1x̄2x̄3 + 0.15x1x̄2x̄3 + 0.1x̄1x2x̄3 + 0.3x1x2x̄3 + 0.06x̄1x̄2x3 + 0.18x1x̄2x3

+ 0.04x̄1x2x3 + 0.12x1x2x3.

Figure 2. An example function f (probability mass function over three binary random variables) and its multilinear polynomial p, network
polynomial p̄, and a multilinear arithmetic circuit computing p.

An important subclass of UFMAC is the analogously defined
class of uniform syntactically multilinear arithmetic circuits
(USMAC). A majority of known tractable models (both
probabilistic and logical) belong to this subclass including
probabilistic sentential decision diagrams (Kisa et al., 2014),
sum-product networks (Poon & Domingos, 2011), d-DNNF
(Darwiche, 2001), and more. Determinantal point processes
are the best known example of a tractable model known to
live in UFMAC but not known to live in USMAC.

In the next section we formalize the problem of marginal-
ization, and show that efficient marginalization is easy for
functions in UFMAC, giving a simple, unified view of exist-
ing marginalization algorithms.

Complexity basics. For notions from basic computational
complexity theory, including complexity classes P, FP, NP,
and #P, we use standard definitions and notation (Arora
& Barak, 2009). We note that while the famous classes P
and NP contain decision problems (functions of the form
f : {0, 1}∗ → {0, 1}), FP and #P can be viewed as natural
analogues for general functions, f : {0, 1}∗ → {0, 1}∗. In
particular, FP contains all functions f : {0, 1}∗ → {0, 1}∗
computable in polynomial time. Moreover, FP ̸= #P is a
well known conjecture in computational complexity theory
and is a weaker assumption than P ̸= NP in the sense that
P ̸= NP implies FP ̸= #P. Therefore, our results which
assume FP ̸= #P also hold if P ̸= NP.

3. Tractable Marginalization
We define tractable marginalization in a natural way. For
every function family f = (fn) with fn : {0, 1}n → Q we
define a corresponding marginalization problem and then
call f tractable for marginalization if its marginalization

problem is polynomial time computable.
Definition 3.1 (MAR(f)). Let f = (fn) with fn :
{0, 1}n → Q. The marginalization problem for f , de-
noted MAR(f), gets input m ∈ {0, 1, ∗}n and outputs∑

x∈Xm
fn(x) where

Xm = {x ∈ {0, 1}n : xi = mi if mi ∈ {0, 1}}.

Intuitively, mi ∈ {0, 1} means that the ith input is fixed
(xi = mi), and mi = ∗ means the ith input is marginalized,
taking values freely in {0, 1}.
Example 3.2 (Marginalization). Consider the function f
shown for n = 3 in Figure 2. Suppose we wish to marginal-
ize over X2 and X3 with the evidence X1 = 0. Specifically,
on input m = (0, ∗, ∗) to MAR(f), we get

Xm = {000, 010, 001, 011}

MAR(f)(m) =
∑

v∈Xm

p(v) = 0.05+0.1+0.06+0.04 = 0.25.

Definition 3.3 (The Class PM). Let f = (fn) with fn :
{0, 1}n → Q. Then f ∈ PM if MAR(f) is polynomial
time computable.

If f ∈ PM, we say f is tractable for variable marginaliza-
tion. If f has boolean codomain, then variable marginaliza-
tion can be viewed as the task of model counting on f after
the substitution of variables given by any (partial) assign-
ment. Of course, if a boolean function (family) f is tractable
for variable marginalization, then the function itself, f(x),
can be computed in polynomial time, by taking m = x.
Proposition 3.4. PM ⊆ FP.

Moreover, it is not hard to see that a function being tractable
for marginalization is a much stronger condition than the

4

The Limits of Tractable Marginalization

function itself being tractable to compute. There exist many
natural problems in FP\PM. For example, if FP ̸= #P,
then every #P-complete problem provides a function in
FP\PM.

Proposition 3.5. If FP ̸= #P, then for every #P-complete
function f , there is a function g ∈ FP\PM.

Examples of functions in FP\PM given by Proposition 3.5
include verifiers for NP-complete problems (e.g., satisfia-
bility problems) as well as functions that do not correspond
to NP-complete problems (e.g., a suitably defined indicator
function for perfect matchings).

3.1. UFMAC has Tractable Marginalization

Having shown functions in FP\PM (assuming FP ̸= #P),
we now consider functions in PM. Such functions include
those expressible by the many existing tractable models
that can be commonly viewed as uniform finally multilinear
circuits. Efficient marginalization for functions in UFMAC
follows from (i) the fact that FMACs can be evaluated at ra-
tional points in polynomial time and (ii) that to compute any
marginalization of f it suffices to evaluate the multilinear
polynomial representation of f at a single point. The former
follows from Lemma 2.4. The elegant latter fact follows
from a very simple argument using linearity of expectation
given below for completeness, which has been observed
before (Juma et al., 2009).

Lemma 3.6. Let f : {0, 1}n → Q have multilinear polyno-
mial p. Then,∑

x∈{0,1}n

f(x) = 2np(1/2, . . . , 1/2).

Proof. We have∑
x∈{0,1}n

p(x) = 2nE
x
p(x1, . . . , xn)

= 2np(E
x1

x1, . . . , E
xn

xn)

= 2np(1/2, . . . , 1/2)

where the expectation is over the uniform distribution, and
the middle equality follows by linearity of expectation.

(The above lemma can also be viewed as extracting the
first Fourier coefficient of f , by first translating the domain
{0, 1} to {−1, 1} by x 7→ 1 − 2x and evaluating at zero.)
With the ability to compute sums of a multilinear polyno-
mial with a single evaluation, we get that functions with
uniform finally multilinear arithmetic circuits are tractable
for marginalization.

Proposition 3.7. UFMAC ⊆ PM.

Proof. Let f ∈ UFMAC be computed by the UFMAC (Cn).
We need to provide a polynomial time Turing machine that
computes MAR(f). On input m ∈ {0, 1, ∗}n, first obtain
Cn by uniformity of f . Then, for any mi ∈ {0, 1}, replace
any node in Cn labeled by xi with mi. Note that multi-
linearity of the polynomial computed is preserved under
this substitution, and all remaining variables now need to
be marginalized. By Lemma 3.6, it suffices to evaluate the
remaining circuit with all inputs set to 1/2, which takes
polynomial time by Lemma 2.4.

4. Hamming Weight Marginalization
A key observation of our work is that UFMACs actually
enable more powerful forms of marginalization. In this
section we introduce the first such form, Hamming weight
marginalization. The Hamming weight of a binary string
x ∈ {0, 1}n is the number of ones in it. Where standard
marginalization asks for the sum of a function’s values over
all assignments with some subset of the inputs fixed, Ham-
ming weight marginalization asks for the sum of its values
only over the inputs of a given Hamming weight. In the case
that the underlying function represents a probability distribu-
tion, Hamming weight marginalization enables conditioning
on the Hamming weight of the binary random variables, or
on the size of the random set, if the variables are interpreted
as the characteristic vector of a set. Algorithms for this
problem are known in some special cases of UFMACs, for
example in ‘structured’ syntactically multilinear circuits
(Vergari et al., 2021) and in determinantal point processes
(Kulesza & Taskar, 2011; Calandriello et al., 2020).

Definition 4.1 (HMAR(f) and PHM). Let f = (fn) with
fn : {0, 1}n → Q. The Hamming weight marginal-
ization problem for f , denoted HMAR(f), takes input
m ∈ {0, 1, ∗}n and k ∈ {0, 1, . . . , n} and gives output∑

x∈Xm,k
fn(x) where

Xm,k = Xm ∩ {x ∈ {0, 1}n : |x| = k}.

Moreover, f ∈ PHM if HMAR(f) is polynomial time com-
putable.

Intuitively, the input m is the same as in MAR(f), and
the additional input k further restricts the x ∈ Xm,k be-
ing summed over to those with Hamming weight |x| = k.
If f ∈ PHM, we say f is tractable for Hamming weight
marginalization.
Example 4.2 (Hamming Weight Marginalization). Recall
the distribution shown in Figure 2. Suppose we want
to sum over X2 and X3, fixing X1 = 0, all strings of
Hamming weight k = 1. Specifically, we have input
m = 0 ∗ ∗, k = 1 to HMAR(f). From Example 3.2,
Xm = {000, 001, 010, 011}. So,

Xm,1 = {010, 001}

5

The Limits of Tractable Marginalization

HMAR(f)(m, 1) =
∑

v∈Xm,1

p(v) = 0.1 + 0.06 = 0.16

We first observe that a function tractable for Hamming
weight marginalization, is also tractable for variable
marginalization, since any variable marginalization query is
the sum of n+ 1 Hamming weight marginalization queries
for all k ∈ {0, 1, ..., n}.
Proposition 4.3. PHM ⊆ PM.

We now show that UFMACs support tractable Hamming
weight marginalization. To do so, we use a useful
circuit transformation. For any multilinear polynomial
p(x1, . . . , xn) =

∑
S⊆[n] cS

∏
i∈S xi with cS ∈ F, the net-

work polynomial for p is the multilinear polynomial

p̄(x1, x̄1, . . . , xn, x̄n) =
∑
S⊆[n]

p(vS)
∏
i∈S

xi

∏
i/∈S

x̄i

where vS ∈ {0, 1}n is the characteristic vector of S. There
is a polynomial time algorithm for transforming an arith-
metic circuit computing a multilinear polynomial to a circuit
computing its network form.
Lemma 4.4 (Broadrick et al. (2024b)). Given an arithmetic
circuit of size s computing polynomial p in n variables, an
arithmetic circuit computing the network polynomial for p
can be constructed in time O(sn).

With the ability to efficiently transform UFMACs to com-
pute their network polynomials, we can efficiently perform
Hamming weight marginalization for UFMACs.
Proposition 4.5. UFMAC ⊆ PHM.

Proof. Let f ∈ UFMAC. We need to provide a polynomial
time Turing machine that computes HMAR(f). On input
m ∈ {0, 1, ∗}n, k ∈ {0, 1, . . . , n}, first obtain a FMAC
that computes fn by uniformity of f . Using Lemma 4.4,
obtain a FMAC computing its network polynomial p̄(x, x̄).
We will now evaluate p̄ as follows. For each i, if mi = 0,
set xi = 0 and x̄i = 1; if mi = 1, set xi = t and x̄i = 0;
if mi = ∗, set xi = t and x̄i = 1. Note that t is a single
indeterminate/symbol used for all such xi. Evaluating the
circuit produces a univariate polynomial in t. The coefficient
of the monomial of degree k is the desired quantity. To see
this, consider some monomial p(vS)

∏
i∈S xi

∏
i/∈S x̄i in p̄.

The monomial evaluates to zero if vS does not agree with m
(i.e., if there is some mi = 1 but i /∈ S or mi = 0 but i ∈ S).
Moreover, the degree of the monomial after the substitution
is |S|, the Hamming weight of vS , as needed.

Example 4.6 (Hamming Weight Marginalization). Recall
Example 4.2. We summed over X2 and X3 with X1 = 0,
only strings of Hamming weight equal to 1. Following the
proof of Proposition 4.5, we compute

p̄(0, 1, t, 1, t, 1) = 0.05 + 0.1t+ 0.06t+ 0.04t2,

and extract the coefficient of tk = t. Hence,
HMAR(f)(m, 1) = 0.16, as in Example 4.2.

4.1. Separating PHM from PM with CSPs

Our construction of a function that is tractable for marginals
but #P-hard for Hamming queries exploits known di-
chotomy theorems for constraint satisfaction problems
(CSPs). Constraint satisfaction problems concern conjunc-
tions of constraints, each an application of some boolean
relation R ⊆ {0, 1}k to variables x1, . . . , xk (not nec-
essarily distinct), i.e., R(x1, . . . , xk) = 1 if and only if
(x1, . . . , xk) ∈ R. For some finite set Γ of boolean relations
(called a constraint language), a Γ-formula is a conjunction
of constraints each an application of some relation in Γ. The
constraint satisfaction problem CSP(Γ) gives a Γ-formula
ϕ as input and asks whether there is a satisfying assignment
for ϕ. The problem k-ONES(Γ) gives a Γ-formula ϕ and
an integer k as input and asks whether there is a satisfying
assignment for ϕ with exactly k ones. The counting versions
of these problems #CSP(Γ) and #k-ONES(Γ) ask for the
number of satisfying assignments (in total and with k ones
respectively). Clearly, the complexity of these problems
depends on the set of relations Γ.

There are elegant dichotomy theorems for these problems,
stating that, depending on Γ, these problems are either poly-
nomial time computable or #P-hard. We say a relation is
affine if it is logically equivalent to a system of linear equa-
tions over GF(2), the finite field containing two elements.

Theorem 4.7 (Creignou & Hermann (1996)). If Γ contains
only affine relations, then #CSP(Γ) is computable in poly-
nomial time. Otherwise, #CSP(Γ) is #P-complete.

To the extent that #CSP(Γ) is a CSP analogue to variable
marginalization, #k-ONES(Γ) is an analogue to Hamming
weight marginalization. There is a similar dichotomy, but
with fewer tractable cases, for #k-ONES(Γ). We say a
relation is width-k affine if it is logically equivalent to a
system of linear equations over GF(2) with each equation
having at most k variables with a nonzero coefficient.

Theorem 4.8 (Creignou et al. (2010)). If Γ contains only
width-2 affine relations, then #k-ONES(Γ) is computable in
polynomial time. Otherwise, #k-ONES(Γ) is #P-complete.

Leveraging these results from the CSP literature, we now
construct a simple function for which standard variable
marginalization is tractable but Hamming weight marginal-
ization is #P-hard; in other words, we find a function
tractable for marginals for which the existence of a UF-
MAC would imply FP = #P. Consider the func-
tion faff : {0, 1}2n3+n → {0, 1} in variables (xi)i∈[n],

6

The Limits of Tractable Marginalization

(yijk)i,j,k∈[n]3 , and (zijk)i,j,k∈[n]3 abbreviated to x,y, z:

faff(x,y, z) =
∧

i,j,k∈[n]3

yijk ⊕ xi ⊕ xj ⊕ xk

∧
∧

i,j,k∈[n]3

yijk ⊕ zijk. (1)

We first observe that marginalization of faff is computable in
polynomial time, mirroring a tractable case of Theorem 4.7.
After substituting in any partial assignment, faff specifies a
linear system over GF(2). Performing Gaussian elimination
reveals k linearly independent equations. If k ≥ n, then
there are no satisfying assignments. If k < n, then there are
2n−k satisfying assignments, as each affine equation (parity
constraint) independently halves the number of solutions.

Proposition 4.9. faff ∈ PM.

To see that Hamming weight marginalization on faff is hard,
we reduce from #k-ONES(Γ) for a chosen Γ consisting of
only width-three affine relations. The reduction encodes
a width-three formula as evidence (a partial assignment)
to faff, maintaining a relationship between the Hamming
weight of the original formula and the resulting query. Intu-
itively, this may work because of the additional width of faff,
though we do not rule out the possibility of a lower-width
function also working. In the reduction, the variables yijk
are used to ‘turn on’ and ‘turn off’ the width-3 equations
in variables xi as needed. The variables zijk and the con-
straints yijk ⊕ zijk are then used to ‘balance’ the Hamming
weight of satisfying assignments since exactly one of yijk
and zijk will be one.

Theorem 4.10. HMAR(faff) is #P-hard. That is, faff /∈
PHM unless FP = #P.

Proof. Consider the following constraint language:

Γ = {a⊕b⊕c} = {{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}}.

By Theorem 4.8, #k-ONES(Γ) is #P-complete. We show
the #P-hardness of HMAR(faff) by providing a deter-
ministic, polynomial time reduction from #k-ONES(Γ).
We get input a Γ-formula ϕ(x1, . . . , xn) and an integer
k ∈ {0, 1, . . . , n}. We construct an ‘evidence string’
m for HMAR(f) as follows, consisting of an entry in
{0, 1, ∗} for each variable xi, yijk, zijk. For any constraint
xi ⊕ xj ⊕ xk = 1 in ϕ, set yijk = 0 and zijk = 1. All
other variables are marginalized, i.e., their entry in m is set
to ∗. Then #k-ONES(Γ)(ϕ, k) = HMAR(faff)(m, k + n3).
To see this, suppose ϕ(x) = 1; we find the only y and
z such that f(x,y, z) = 1, and we then observe that
|x,y, z| = |x|+n3. Every constraint of ϕ is satisfied, and so
every width-4 constraint in f with yijk = 0 is satisfied. For
constraints xi⊕xj⊕xk not in ϕ, the corresponding width-4
clause in f is satisfied by setting the free variable yijk to

whichever value (0 or 1) is necessary. The values zijk are
then set to the opposite of the values of yijk which satisfies
the remaining width-2 clauses of f . For every i, j, k ∈ [n]3

we have zijk ̸= yijk, and so |y|+ |z| = n3.

Having shown that HMAR(faff) is #P-hard, we have es-
tablished that, unless FP = #P, the function faff is not
in UFMAC. In particular, this means that faff cannot be
efficiently represented by known tractable logical represen-
tation languages like d-DNNF or BDD, nor by tractable
probabilistic models like SPNs or DPPs. This answers our
central question negatively, showing that known models
for tractable marginalization do not characterize the class
of functions with tractable marginalization, suggesting the
potential for yet more expressive-efficient tractable models.
We remark that our separating example avoids the known
efficient reductions from weighted to unweighted variants of
counting problems, for example in weighted model counting
(Chakraborty et al., 2015) and weighted CSP counting vari-
ants (Bulatov et al., 2012). We also note that Theorem 4.10
partially resolves an open question on the succinctness of
languages in the knowledge compilation literature (Koriche
et al., 2013) as described in Appendix D.

5. Virtual Evidence Marginalization
Interestingly, the computational problems we have studied
so far can be characterized by the ability to evaluate the mul-
tilinear polynomial representation of the underlying func-
tion on increasingly large domains. To efficiently compute
f itself, one need only efficiently evaluate its multilinear
polynomial p on {0, 1}n. To efficiently compute MAR(f),
it suffices to efficiently evaluate p on {0, 1/2, 1}n. For
HMAR(f), it suffices to evaluate p on a set of the form
∪n−2
i=1 ({0, 1/2, 1, ai}n) for distinct ai ∈ R as shown below

in Proposition 5.3. This begs the question: What power is af-
forded by the ability to evaluate the multilinear polynomial
at all rational points? Nicely, this task corresponds naturally
to probabilistic inference in the presence of virtual evidence.

Virtual evidence is a well known generalization of the stan-
dard notion of (hard) evidence (Bilmes, 2004). Where ob-
serving hard evidence means that the probabilities for some
subset of outcomes in a distribution be ‘zeroed out’, virtual
evidence allows the rescaling of the probabilities by arbi-
trary (nonnegative) weights. Given a probability distribution
over variables X1, . . . , Xn, observing – conditioning on –
the hard evidence that Xi = 1 can be viewed as scaling the
probability for all outcomes with X ̸= 1 by a factor of 0
(and then renormalizing the distribution). On the other hand,
it is often necessary, for example in Bayesian belief updates,
to multiply the probability of outcomes with Xi ̸= 1 by
factors other than 0.

We consider a general version of the problem of updat-

7

The Limits of Tractable Marginalization

ing a distribution given virtual evidence, though multiple
formulations are possible (Chan & Darwiche, 2005). Let
X1, . . . , Xn be random variables supported on {0, 1} with
joint probability mass function p(x1, . . . , xn). Given scal-
ing factors α1, ᾱ1, . . . , αn, ᾱn ∈ R≥0 with either αi > 0
or ᾱi > 0 for each i, the mass function obtained after ob-
serving (α1, ᾱ1, . . . , αn, ᾱn)-virtual evidence is given by

p(x1, . . . , xn)

n∏
i=1

(αixi + ᾱi(1− xi)) (2)

up to normalization. (Note that ignoring normalization for
distributions in PM is not a computational issue, as normal-
ization requires a single call to MAR(f), namely with all
coordinates marginalized.) We formulate the problem of
virtual evidence marginalization as follows.
Definition 5.1 (VMAR(f) and PVM). Let f = (fn) with
fn : {0, 1}n → Q, and let p = (pn) be the family of mul-
tilinear polynomials computing f . The virtual evidence
marginalization problem for f , denoted VMAR(f), gets
input x1, x2, . . . , xn ∈ Q and outputs p(x1, . . . , xn). More-
over, f ∈ PVM if VMAR(f) is polynomial time com-
putable.

If f ∈ PVM, we say f is tractable for virtual evidence
marginalization. That VMAR(f) enables the incorporation
of virtual evidence in the sense of Equation (2) follows by
a straightforward application of Lemma 4.4 which we give
in Appendix B. We immediately get that VMAR(f) can be
solved for UFMACs by simply evaluating (Lemma 2.4).
Proposition 5.2. UFMAC ⊆ PVM.

The fact that functions in UFMAC permit efficient condition-
ing on virtual evidence generalizes known algorithms for
special cases, including Bayesian networks with bounded
treewidth (Bilmes, 2004) and certain syntactically multilin-
ear circuits (Chan, 2017; Liu & Van den Broeck, 2021), with
Proposition 5.2 giving a generalization of them. It is also
straightforward to reduce Hamming weight marginalization
to virtual evidence marginalization.
Proposition 5.3. PVM ⊆ PHM.

Proof. Suppose VMAR(f) is polynomial time computable.
Consider the algorithm given in the proof of Proposition 4.5.
This algorithm defines a univariate polynomial q(t) in terms
of the multivariate (multilinear) polynomial p(x1, . . . , xn)
by setting each xi to either a constant or to t. The degree of
q(t) is at most n. Therefore, all the coefficients of q(t) can
be recovered by interpolation by evaluating at n+1 distinct
points using the polynomial time algorithm for VMAR(f).
Now, HMAR(f) is simply the appropriate coefficient, as
per the proof of Proposition 4.5.

Intuitively, this shows that despite Definition 5.1 contain-
ing no explicit summation, there is in some sense a hidden

marginalization problem in every VMAR query. On the one
hand, multiplying the inputs by arbitrary rationals can be
viewed as updating the distribution given virtual evidence,
but on the other hand, we have observed (Lemma 3.6) that
marginalization of f can be reduced to evaluating the mul-
tilinear polynomial p for f at 1/2, . . . , 1/2. Therefore the
evaluation of p at arbitrary rational points a1, . . . , an can
be viewed as first applying virtual evidence corresponding
to 2a1, . . . , 2an to x1, . . . , xn to get 2a1x1, . . . , 2anxn and
then evaluating at x1 = . . . = xn = 1/2, i.e., marginaliz-
ing. In particular, to compute a marginal probability given
some virtual evidence, a single VMAR(f) query suffices.

Intuitively, VMAR(f) captures the computational power
afforded by a UFMAC, which raises the question: are UF-
MACs ‘complete’ for virtual evidence marginalization in the
sense that any function f with an efficient algorithm (Turing
machine) for VMAR(f) in fact has a UFMAC? That is, do
we have UFMAC = PVM? This is the version of a question
(restricted to multilinear polynomials) which has been asked
before and appears challenging to answer (Koiran & Perifel,
2011). We are able, however, to give such a completeness
result in the real RAM model of computation.

5.1. Completeness for Real RAMs

Given the apparent difficulty of answering this question for
discrete computation models (i.e., Turing machines) and that
the question naturally extends to real inputs, we consider
the real RAM model of computation in which real numbers
are stored in constant space and manipulated by constant
time arithmetic. See Appendix C for a brief introduction
to the model, though we refer the reader to Erickson et al.
(2024) for a full presentation. First, we extend the notion of
UFMACs to the real RAM model. We say a function family
f = (fn) with f : {0, 1}n → R with multilinear represen-
tation p = (pn) has a real RAM UFMAC if there exists a
polynomial time real RAM which on input 1n outputs an
arithmetic circuit Cn computing pn, in some fixed standard
representation (see Appendix C.1). Note that we no longer
require the bound on degree since intermediate values are al-
ways a single word in the real RAM computation, avoiding
the problem of circuit evaluation by Turing machines. We
also extend the definitions of MAR, HMAR, and VMAR
in the natural way to the real RAM model. We then ob-
serve that if f has a polynomial time real RAM computing
VMAR(f), then the f has real RAM UFMACs, showing
that UFMACs are in that sense complete for virtual evidence
marginalization. The proof, given in Appendix C, observes
that if the real RAM computes the polynomial correctly on
all points, then there is some branch of the computation
(i.e., ignoring comparisons) which computes it on all points,
from which an arithmetic circuit can be recovered.
Proposition 5.4. Let f = (fn) with fn : {0, 1}n → Q.
If there exists a polynomial time real RAM computing

8

The Limits of Tractable Marginalization

VMAR(f), then there exists a real RAM UFMAC comput-
ing f .

6. Related Work and Conclusion
We highlight some closely related research areas. While
we focus on theoretical limits of marginalization, there is
much work on leveraging theoretical progress in practice
(Sladek et al., 2023; Loconte et al., 2023; 2024; Wang &
Van den Broeck, 2025). Moreover, probabilistic models
with tractable marginalization, in addition to quickly devel-
oping as performant probabilistic models in their own right
(Liu et al., 2024a), also appear as integral components in re-
cent proposals for control and alignment of deep generative
models (Zhang et al., 2023; 2024; Liu et al., 2024b; Ahmed
et al., 2022) as well as numerous other applications (We-
denig et al., 2024; Saad et al., 2021). Where we study exact
marginalization, approximate methods form their own vast
area (Hoffman et al., 2013; Liu et al., 2023). We considered
functions of binary variables and note work on productive
reductions to this setting (Garg et al., 2024; Cao et al., 2023).
Given our use of affine relations, we observe that such par-
ity constraints appear in other work on boolean knowledge
representation both in algorithms and languages (Fargier
& Marquis, 2008; Koriche et al., 2013; Fargier & Marquis,
2014; de Colnet & Mengel, 2021; Chakraborty et al., 2021).

In summary, despite known models with tractable marginal-
ization being expressible as UFMACs, we show that there
exist functions with tractable marginalization, yet no UF-
MAC assuming FP ̸= #P. On the other hand, UFMACs
support the more powerful Hamming weight marginaliza-
tion and virtual evidence marginalization, being complete
for the latter in the real RAM model of computation.

We conclude with two open questions. First, is the inclusion
PVM ⊆ PHM strict? Second, observing that all marginal-
ization algorithms in this paper are amenable to paralleliza-
tion, do there exist sequential (P-hard) marginalization prob-
lems?

Acknowledgements
This work was funded in part by the DARPA ANSR,
CODORD, and SAFRON programs under awards FA8750-
23-2-0004, HR00112590089, and HR00112530141, NSF
grant IIS1943641, and gifts from Adobe Research, Cisco
Research, and Amazon. Approved for public release; distri-
bution is unlimited.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be

specifically highlighted here.

References
Agarwal, S. and Bläser, M. Probabilistic generating circuits

- demystified. In Salakhutdinov, R., Kolter, Z., Heller, K.,
Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 329–342. PMLR, 21–
27 Jul 2024. URL https://proceedings.mlr.
press/v235/agarwal24c.html.

Ahmed, K., Teso, S., Chang, K.-W., Van den Broeck, G.,
and Vergari, A. Semantic probabilistic layers for neuro-
symbolic learning. Advances in Neural Information Pro-
cessing Systems, 35:29944–29959, 2022.

Arora, S. and Barak, B. Computational complexity: a mod-
ern approach. Cambridge University Press, 2009.

Arteta, C., Lempitsky, V., and Zisserman, A. Counting in
the wild. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part VII 14, pp. 483–498.
Springer, 2016.

Bilmes, J. On virtual evidence and soft evidence in bayesian
networks. University of Washington Electrical Engineer-
ing Technical Report UWEETR-2004-0016, 2004.

Bishop, C. M. and Bishop, H. Deep learning: Foundations
and concepts. Springer Nature, 2023.

Bläser, M. Not all strongly rayleigh distributions have
small probabilistic generating circuits. In Proceedings of
the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Broadrick, O., Cao, W., Wang, B., Trapp, M., and
Van den Broeck, G. Probabilistic circuits for cumula-
tive distribution functions. In Proceedings of the UAI
Workshop on Tractable Probabilistic Modeling (TPM),
aug 2024a. URL http://starai.cs.ucla.edu/
papers/BroadrickTPM24.pdf.

Broadrick, O., Zhang, H., and Van den Broeck, G. Poly-
nomial semantics of tractable probabilistic circuits. In
40th Conference on Uncertainty in Artificial Intelligence,
2024b.

Bulatov, A., Dyer, M., Goldberg, L. A., Jalsenius, M., Jer-
rum, M., and Richerby, D. The complexity of weighted
and unweighted# csp. Journal of Computer and System
Sciences, 78(2):681–688, 2012.

Calandriello, D., Derezinski, M., and Valko, M. Sampling
from a k-dpp without looking at all items. Advances in

9

https://proceedings.mlr.press/v235/agarwal24c.html
https://proceedings.mlr.press/v235/agarwal24c.html
http://starai.cs.ucla.edu/papers/BroadrickTPM24.pdf
http://starai.cs.ucla.edu/papers/BroadrickTPM24.pdf

The Limits of Tractable Marginalization

Neural Information Processing Systems, 33:6889–6899,
2020.

Cao, W. X., Garg, P., Tjoa, R., Holtzen, S., Millstein, T., and
Van den Broeck, G. Scaling integer arithmetic in proba-
bilistic programs. In Evans, R. J. and Shpitser, I. (eds.),
Proceedings of the Thirty-Ninth Conference on Uncer-
tainty in Artificial Intelligence, volume 216 of Proceed-
ings of Machine Learning Research, pp. 260–270. PMLR,
31 Jul–04 Aug 2023. URL https://proceedings.
mlr.press/v216/cao23b.html.

Castillo, E., Gutiérrez, J. M., and Hadi, A. S. Para-
metric structure of probabilities in bayesian networks.
In European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, pp. 89–98.
Springer, 1995.

Chakraborty, S., Fried, D., Meel, K. S., and Vardi, M. Y.
From weighted to unweighted model counting. In IJCAI,
pp. 689–695, 2015.

Chakraborty, S., Meel, K. S., and Vardi, M. Y. Approximate
model counting. In Handbook of Satisfiability, pp. 1015–
1045. IOS Press, 2021.

Chan, H. Incorporating uncertain evidence into arithmetic
circuits representing probability distributions. In Ad-
vanced Methodologies for Bayesian Networks, pp. 105–
116. PMLR, 2017.

Chan, H. and Darwiche, A. On the revision of probabilistic
beliefs using uncertain evidence. Artificial Intelligence,
163(1):67–90, 2005.

Choi, Y., Vergari, A., and Van den Broeck, G. Probabilis-
tic circuits: A unifying framework for tractable prob-
abilistic models. UCLA. URL: http://starai. cs. ucla.
edu/papers/ProbCirc20. pdf, pp. 6, 2020.

Chow, C. and Liu, C. Approximating discrete probability
distributions with dependence trees. IEEE transactions
on Information Theory, 14(3):462–467, 1968.

Cooper, G. F. The computational complexity of probabilis-
tic inference using bayesian belief networks. Artificial
intelligence, 42(2-3):393–405, 1990.

Creignou, N. and Hermann, M. Complexity of generalized
satisfiability counting problems. Information and compu-
tation, 125(1):1–12, 1996. doi: 10.1006/inco.1996.0016.
URL https://doi.org/10.1006/inco.1996.
0016.

Creignou, N., Schnoor, H., and Schnoor, I. Nonuni-
form boolean constraint satisfaction problems with car-
dinality constraint. ACM Trans. Comput. Logic, 11
(4), jul 2010. ISSN 1529-3785. doi: 10.1145/

1805950.1805954. URL https://doi.org/10.
1145/1805950.1805954.

Darwiche, A. On the tractable counting of theory models
and its application to truth maintenance and belief revi-
sion. Journal of Applied Non-Classical Logics, 11(1-2):
11–34, 2001.

Darwiche, A. and Provan, G. Query dags: A practi-
cal paradigm for implementing belief-network inference.
Journal of Artificial Intelligence Research, 6:147–176,
1997.

de Colnet, A. and Mengel, S. A compilation of succinctness
results for arithmetic circuits. Proceedings of the 18th
International Conference on Principles of Knowledge
Representation and Reasoning, 2021.

Erickson, J., van der Hoog, I., and Miltzow, T. Smoothing
the gap between np and er. SIAM Journal on Computing,
53(6):FOCS20–102–FOCS20–138, 2024. doi: 10.1137/
20M1385287.

Fargier, H. and Marquis, P. Extending the knowledge com-
pilation map: Krom, horn, affine and beyond. In 23th
AAAI Conference on Artificial Intelligence (AAAI’08), pp.
442–447, 2008.

Fargier, H. and Marquis, P. Disjunctive closures for knowl-
edge compilation. Artificial Intelligence, 216:129–162,
2014.

Garg, P., Holtzen, S., Van den Broeck, G., and Millstein,
T. Bit blasting probabilistic programs. Proceedings of
the ACM on Programming Languages, 8(PLDI):865–888,
2024.

Gomes, C. P., Sabharwal, A., and Selman, B. Model count-
ing. In Handbook of satisfiability, pp. 993–1014. IOS
press, 2021.

Harviainen, J., Ramaswamy, V. P., and Koivisto, M. On
inference and learning with probabilistic generating cir-
cuits. In Uncertainty in Artificial Intelligence, pp. 829–
838. PMLR, 2023.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research, 2013.

Juma, A., Kabanets, V., Rackoff, C., and Shpilka, A. The
black-box query complexity of polynomial summation.
computational complexity, 18(1):59–79, 2009.

Karp, R. M. and Lipton, R. J. Some connections between
nonuniform and uniform complexity classes. In Proceed-
ings of the twelfth annual ACM symposium on Theory of
computing, pp. 302–309, 1980.

10

https://proceedings.mlr.press/v216/cao23b.html
https://proceedings.mlr.press/v216/cao23b.html
https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1145/1805950.1805954
https://doi.org/10.1145/1805950.1805954

The Limits of Tractable Marginalization

Kingma, D. P., Welling, M., et al. An introduction to vari-
ational autoencoders. Foundations and Trends® in Ma-
chine Learning, 12(4):307–392, 2019.

Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A.
Probabilistic sentential decision diagrams. In Fourteenth
International Conference on the Principles of Knowledge
Representation and Reasoning, 2014.

Koiran, P. and Perifel, S. Interpolation in valiant’s theory.
Computational Complexity, 20:1–20, 2011.

Koller, D. Probabilistic graphical models: Principles and
techniques, 2009.

Koriche, F., Lagniez, J.-M., Marquis, P., and Thomas, S.
Knowledge compilation for model counting: Affine deci-
sion trees. In IJCAI, pp. 947–953, 2013.

Kulesza, A. and Taskar, B. k-dpps: Fixed-size determinantal
point processes. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pp. 1193–
1200, 2011.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends®
in Machine Learning, 5(2–3):123–286, 2012.

Liu, A. and Van den Broeck, G. Tractable regularization
of probabilistic circuits. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 3558–3570. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
1d0832c4969f6a4cc8e8a8fffe083efb-
Paper.pdf.

Liu, A., Ahmed, K., and Van den Broeck, G. Scal-
ing tractable probabilistic circuits: A systems per-
spective. In Proceedings of the 41th International
Conference on Machine Learning (ICML), jul 2024a.
URL http://starai.cs.ucla.edu/papers/
LiuICML24.pdf.

Liu, A., Niepert, M., and Van den Broeck, G. Im-
age inpainting via tractable steering of diffusion mod-
els. In Proceedings of the Twelfth International
Conference on Learning Representations (ICLR), May
2024b. URL http://starai.cs.ucla.edu/
papers/LiuICLR24.pdf.

Liu, S., Ramadge, P. J., and Adams, R. P. Gen-
erative marginalization models. arXiv preprint
arXiv:2310.12920, 2023.

Loconte, L., Sladek, A. M., Mengel, S., Trapp, M., Solin,
A., Gillis, N., and Vergari, A. Subtractive mixture models

via squaring: Representation and learning. arXiv preprint
arXiv:2310.00724, 2023.

Loconte, L., Mengel, S., and Vergari, A. Sum of squares
circuits. arXiv preprint arXiv:2408.11778, 2024.

Meila, M. and Jordan, M. I. Learning with mixtures of
trees. Journal of Machine Learning Research, 1(Oct):
1–48, 2000.

Nisan, N. and Wigderson, A. Lower bounds on arithmetic
circuits via partial derivatives. Computational complexity,
6:217–234, 1996.

O’Donnell, R. Analysis of boolean functions. Cambridge
University Press, 2014.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pp.
689–690. IEEE, 2011.

Preparata, F. P. and Shamos, M. I. Computational geometry:
an introduction. Springer Science & Business Media,
2012.

Rabiner, L. and Juang, B. An introduction to hidden markov
models. ieee assp magazine, 3(1):4–16, 1986.

Rahman, T., Kothalkar, P., and Gogate, V. Cutset networks:
A simple, tractable, and scalable approach for improving
the accuracy of chow-liu trees. In Machine Learning and
Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2014, Nancy, France, September 15-
19, 2014. Proceedings, Part II 14, pp. 630–645. Springer,
2014.

Raz, R. Multi-linear formulas for permanent and determi-
nant are of super-polynomial size. Journal of the ACM
(JACM), 56(2):1–17, 2009.

Raz, R., Shpilka, A., and Yehudayoff, A. A lower bound
for the size of syntactically multilinear arithmetic circuits.
SIAM Journal on Computing, 38(4):1624–1647, 2008.

Roth, D. On the hardness of approximate reasoning. Ar-
tificial Intelligence, 82(1):273–302, 1996. ISSN 0004-
3702. doi: https://doi.org/10.1016/0004-3702(94)00092-
1. URL https://www.sciencedirect.com/
science/article/pii/0004370294000921.

Roth, D. and Samdani, R. Learning multi-linear represen-
tations of distributions for efficient inference. Machine
Learning, 76:195–209, 2009.

Saad, F. A., Rinard, M. C., and Mansinghka, V. K. Sppl:
probabilistic programming with fast exact symbolic in-
ference. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf
http://starai.cs.ucla.edu/papers/LiuICML24.pdf
http://starai.cs.ucla.edu/papers/LiuICML24.pdf
http://starai.cs.ucla.edu/papers/LiuICLR24.pdf
http://starai.cs.ucla.edu/papers/LiuICLR24.pdf
https://www.sciencedirect.com/science/article/pii/0004370294000921
https://www.sciencedirect.com/science/article/pii/0004370294000921

The Limits of Tractable Marginalization

Design and Implementation, PLDI 2021, pp. 804–819,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383912. doi: 10.1145/
3453483.3454078. URL https://doi.org/10.
1145/3453483.3454078.

Saptharishi, R. A survey of lower bounds in arithmetic
circuit complexity. Github survey, 95, 2015.

Shpilka, A., Yehudayoff, A., et al. Arithmetic circuits: A
survey of recent results and open questions. Foundations
and Trends® in Theoretical Computer Science, 5(3–4):
207–388, 2010.

Sladek, A. M., Trapp, M., and Solin, A. Encoding nega-
tive dependencies in probabilistic circuits. In The 6th
Workshop on Tractable Probabilistic Modeling, 2023.

Strassen, V. Vermeidung von Divisionen. Journal für die
reine und angewandte Mathematik, 264:184–202, 1973.
URL http://eudml.org/doc/151394.

Vergari, A., Choi, Y., Liu, A., Teso, S., and Van den Broeck,
G. A compositional atlas of tractable circuit operations for
probabilistic inference. Advances in Neural Information
Processing Systems, 34:13189–13201, 2021.

Wang, B. and Van den Broeck, G. On the relationship
between monotone and squared probabilistic circuits. In
Proceedings of the 39th Annual AAAI Conference on
Artificial Intelligence, feb 2025.

Wedenig, T., Nagpal, R., Cassiers, G., Mangard, S., and Pe-
harz, R. Exact soft analytical side-channel attacks using
tractable circuits. In Salakhutdinov, R., Kolter, Z., Heller,
K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Ma-
chine Learning Research, pp. 52472–52483. PMLR, 21–
27 Jul 2024. URL https://proceedings.mlr.
press/v235/wedenig24a.html.

Yu, Z., Trapp, M., and Kersting, K. Characteristic circuits.
Advances in Neural Information Processing Systems, 36,
2024.

Zhang, H., Holtzen, S., and Broeck, G. On the relationship
between probabilistic circuits and determinantal point
processes. In Conference on Uncertainty in Artificial
Intelligence, pp. 1188–1197. PMLR, 2020.

Zhang, H., Juba, B., and Van den Broeck, G. Probabilis-
tic generating circuits. In International Conference on
Machine Learning, pp. 12447–12457. PMLR, 2021.

Zhang, H., Dang, M., Peng, N., and Van den Broeck,
G. Tractable control for autoregressive language gen-
eration. In Proceedings of the 40th International

Conference on Machine Learning (ICML), jul 2023.
URL http://starai.cs.ucla.edu/papers/
ZhangICML23.pdf.

Zhang, H., Kung, P.-N., Yoshida, M., Van den Broeck,
G., and Peng, N. Adaptable logical control for
large language models. In Advances in Neural Infor-
mation Processing Systems 37 (NeurIPS), dec 2024.
URL https://starai.cs.ucla.edu/papers/
ZhangNeurIPS24.pdf.

12

https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1145/3453483.3454078
http://eudml.org/doc/151394
https://proceedings.mlr.press/v235/wedenig24a.html
https://proceedings.mlr.press/v235/wedenig24a.html
http://starai.cs.ucla.edu/papers/ZhangICML23.pdf
http://starai.cs.ucla.edu/papers/ZhangICML23.pdf
https://starai.cs.ucla.edu/papers/ZhangNeurIPS24.pdf
https://starai.cs.ucla.edu/papers/ZhangNeurIPS24.pdf

The Limits of Tractable Marginalization

A. Uniform Finally Multilinear Arithmetic Circuits
A.1. Note on Representation

The choice of representation is not important up to polynomial changes in length. For example and completeness, one
can take the description following (Arora & Barak, 2009, Definition 6.5), substituting node types in the natural way, and
indicating an edge not with zero or one but with a rational a/b with a, b ∈ Z given in base two.

A.2. Efficient Circuit Evaluation

We show that uniform finally multilinear arithmetic circuits can be evaluated at rational points in polynomial time. To do
so, we first show that if a circuit family can be evaluated at integral points in polynomial time then it can be evaluated at
rational points in polynomial time, a reduction which indeed holds for general arithmetic circuit families. (We also remark
that multilinearity is not used in any of the proceeding arguments, and so, indeed, any uniform arithmetic circuit family with
the degree bound of Definition 2.2 can be efficiently evaluated in the same way.)
Lemma A.1. If there is a polynomial time Turing machine for evaluating the arithmetic circuit family C = (Cn)n=1,2,...

at integral points x1, . . . , xn ∈ Z, then there is a polynomial time Turing machine that evaluates C at rational points
x1, . . . , xn ∈ Q.

Proof. Consider the input a1

b1
, a2

b2
, . . . , an

bn
, with each ai, bi ∈ Z. Let D =

∏n
i=1 bi, a common denominator. Let ci =

ai
∏

j∈[n]\{i} bj ∈ Z, and so ai

bi
= ci

D . Denote by p the polynomial computed by Cn with the degree of p being d∗. Then,
using a new variable t, observe that

p
(
t
c1
D
, . . . , t

cn
D

)
=

∑
d1,...,dn∈[0,1,...,d∗]n

αd1,...,dn

n∏
i=1

(
t
ci
D

)di

(3)

=

n∑
k=0

(
1

D

)k

tk
∑

d1,...,dn∈[0,1,...,d∗]n:
∑n

i=1 di=k

αd1,...,dn

n∏
i=1

(ci)
di .

where αd1,...,dn
∈ Q. In particular, consider the univariate polynomial in t,

f(t) = p (tc1, . . . , tcn) =
∑

d1,...,dn∈[0,1,...,d∗]n

αd1,...,dn

n∏
i=1

(tci)
di

=

n∑
k=0

tk
∑

d1,...,dn∈[0,1,...,d∗]n:
∑n

i=1 di=k

αd1,...,dn

n∏
i=1

(ci)
di .

The polynomial f(t) is of degree at most n and thus can explicitly by interpolation given the evaluation of p at n+1 distinct
(indeed, integral) points. Then, having f(t), the value p

(
c1
D , . . . , cn

D

)
= p

(
a1

b1
, . . . , an

bn

)
can be recovered, following

Equation (3), by multiplying the coefficient of tk in f(t) by D−k for k = 0, 1, . . . , n and summing. (Note that, while
recovering f(t) in this black-box manner suffices in general, f(t) can be obtained more directly in the case of uniform
circuits by evaluating the circuit “symbolically” according to Equation (3), requiring 1 rather than n+ 1 evaluations.)

We now show that uniform finally multilinear arithmetic circuits can be efficiently evaluated at rational points, Lemma 2.4,
restated here for convenience.

Lemma 2.4. Let C = (Cn)n=1,2,... be a uniform finally multilinear arithmetic circuit family. Then there exists a polynomial
time Turing machine which on input x1, x2, . . . , xn ∈ Q computes Cn(x1, x2, . . . , xn).

Proof. By Lemma A.1, it suffices to show that C can be evaluated at integral points. First, obtain the circuit Cn in
polynomial time by the uniformity of C. Next, we show that evaluating Cn(x1, . . . , xn) in the natural way takes polynomial
time, owing to the polynomial bound on the degree of internal nodes.

Assume inputs a1, . . . , an ∈ Z are given in base two (with an additional sign bit). For a ∈ Z, denote by ||a|| the number of
bits needed to write a in this way (e.g., ||a|| ≤ 2 + log2 a). Then, for integers a, b, we have ||a+ b|| ≤ 1 +max{||a||, ||b||}
(Fact 1) and ||a ·b|| ≤ ||a||+ ||b|| (Fact 2), and, moreover, such additions and multiplications are polynomial time computable.

13

The Limits of Tractable Marginalization

Consider the augmented circuit C ′
n obtained by replacing the constants of Cn by fresh variables. We say a node is of degree

d if the polynomial it computes is of degree d (in both the original and fresh variables). Let B(d) be the maximum number
of bits needed to write the integer computed by any node of degree d in C ′

n. We show by induction that B(d) ≤ (3d− 1)N ,
where N is the length of the input (i.e., N ≈

∑n
i=1 ||ai||). This completes the proof since the additions and multiplications

themselves are polynomial time computable in this bitwidth, and d is bounded by a polynomial in n ≤ N by Definition 2.3.
Note that by uniformity of C there exists a (univariate) polynomial q upper bounding the size of the representation of C ′

n by
q(n).

For the base case, we upper bound B(1) by considering all nodes of degree 1 by cases (there are no nodes in C ′
n of degree

zero). For input nodes xi in C ′
n which were already variables in Cn, the bitwidth is at most N ≤ q(N) since they are

evaluated as ai. For input nodes zi in C ′
n corresponding to the constants of Cn, the bitwidth is at most q(n) ≤ q(N) by

uniformity of C. The nodes of degree one considered so far thus require at most q(N) bits each. All other nodes must
be the sum of two3 degree one nodes and since there are at most q(n) ≤ q(N) nodes total in C ′

n, and by Fact 1, we get
B(1) ≤ 2q(N). Proceeding by induction, assume B(k) ≤ (3d−1)q(N), and consider B(k+1). Nodes of degree k+1 are
obtained either (i) as a product of lower degree nodes or (ii) as a sum of nodes with degree at most k+ 1. For case (i) and by
Fact 2, the maximum resulting bitwidth is at most maxi∈[k] B(i)+B(k+1− i) ≤ (3(k+1)−2)q(N) where the inequality
follows from the inductive hypothesis. For case (ii), since there are at most q(n) ≤ q(N) nodes in the circuit, we can have
at most q(N) many additions of degree k+1 nodes. Hence, by Fact 1 we have B(k+1) ≤ q(N) + (3(k+1)− 2)q(N) =
(3(k + 1)− 1)q(N) as needed.

B. Virtual Evidence
Consider a function f = (fn) with fn : {0, 1}n → Q with multilinear polynomial p = (pn). Here, we interpret the function
as a probability mass function. We show how to use VMAR(f) to observe virtual evidence on this distribution, in a way
which allows multiple such observations of virtual evidence (by its commutativity) and so maintaining the ability to compute
VMAR queries (and so HMAR and MAR queries) on the resulting distributions. Consider the following expression with
αixi and ᾱix̄i not both zero (i.e., xi ∈ {0, 1}, x̄i := 1 − xi, and αi, ᾱi not both zero as is guaranteed for valid virtual
evidence scaling factors).

(
n∏

i=1

(αixi + ᾱix̄i)

)
p

(
α1x1

α1x1 + ᾱ1x̄1
, . . . ,

αnxn

αnxn + ᾱnx̄n

)
(4)

=

(
n∏

i=1

(αixi + ᾱix̄i)

) ∑
S⊆[n]

p(vs)
∏
i∈S

αixi

αixi + ᾱix̄i

∏
i/∈S

(
1− αixi

αixi + ᾱix̄i

)
by interpolation

=
∑
S⊆[n]

p(vS)
∏
i∈S

αixi

∏
i/∈S

ᾱix̄i (5)

=

(
n∏

i=1

(αixi + ᾱix̄i)

) ∑
S⊆[n]

p(vS)
∏
i∈S

xi

∏
i/∈S

x̄i using xi ̸= x̄i and x2 = x for x ∈ {0, 1}

= p̄(x1, x̄1, . . . , xn, x̄n)

n∏
i=1

(αixi + ᾱix̄i) by definition

= p(x1, . . . , xn)

n∏
i=1

(αixi + ᾱix̄i) by definition

Thus evaluating the expression Equation (4) allows one to condition on virtual evidence given an algorithm for VMAR(f).
Note that Equation (5) can be written as

∑
S⊆[n] p(vS)

(∏
i∈S αi

∏
i/∈S ᾱi

)∏
i∈S xi

∏
i/∈S x̄i. By inspection, this already

gives the desired effect of virtual evidence (i.e., scaling the probabilities of outcomes by the corresponding factor); we show
the final three steps to demonstrate alignment with the definition given in Equation (2) (and so relying on xi, x̄i ∈ {0, 1}).

3Enforcing at most two children per node is straightforward in polynomial time (and so changing the size of the circuit by at most a
polynomial factor).

14

The Limits of Tractable Marginalization

C. Real RAM
The real RAM is a standard computational model used extensively for modeling computations involving real numbers,
widely popular in the computational geometry community; we refer to Preparata & Shamos (2012) for more details. Several
variants of the model have been developed, and here we briefly describe a recent formalization provided by (Erickson et al.,
2024), which has the advantage of describing uniform algorithms. Every real RAM algorithm takes as input a pair of vectors
(a, b) ∈ Rn × Zm, and has a fixed bit size w of every word. Essentially, a word is any integer in {0, ..., 2w − 1} which can
be represented as a sequence of w bits. A word size w = Ω(log(n+m)) suffices, with the additional advantage of providing
O(1) access to input data. The machine contains two random access arrays W [0...2w − 1] and R[0...2w − 1], to store words
and exact real values, respectively. There is a machine program counter that is incremented at each step, and at any point the
machine executes the step indicated by this counter. The runtime of the machine is the number of instructions executed by
the machine before halting. On the word array, we are allowed constant and memory assignments, comparisons between
different word values, rounded arithmetic operations like addition, subtraction, multiplication, and division, and bitwise
boolean operations. For the real array, we are allowed constant assignments to 0 or 1, memory assignments, comparison
with 0, and exact arithmetic operations such as addition, subtraction, multiplication, and division. Note that here we consider
real RAMs without the ability to perform square roots on real inputs. The major points of difference between the real array
and the word array are: while we are allowed to cast integers as reals, we do not allow casting reals to integers (for example,
by using floor function), testing whether a real register stores an integer value, or any access to the binary representation of
the real numbers.

C.1. Real RAM UFMACs

We say that f = (fn) with f : {0, 1}n → R has a real RAM UFMAC if there exists a polynomial time real RAM which on
input 1n outputs an arithmetic circuit Cn computing fn. The real RAM operates on the padded input (1p(n), 1p(n)), where
p(n) is a polynomial bound on the size of Cn, i.e., at most the running time of the real RAM. The output is a circuit in some
standard representation, with the gates, edge relations, and edge weights encoded in the memory array on output, using real
registers to store edge weights of the circuit.

C.2. Proof of Proposition 5.4

Proof. Consider any input for VMAR(f) given to the real RAM as the tuple ⟨W,R⟩ where W represents the word array
(storing w-bit numbers), and R represents the array of reals. The important thing to note is that the input points for the
VMAR query are given to us in R, and W is empty initially. Also, as mentioned in Appendix C above, the only real
operation affected by the word array is when we cast integers to reals. However, this can be replicated purely on the real
registers by creating the constant (by repeated multiplication and addition) on the reals, and then using that. Since, any word
size is bounded by 2w, we can make the constant in poly(w) time by repeated multiplication. Hence, any computation on
the word array doesn’t actually contribute to the final output. For the sake of completeness, we do note that since all words
are w-bit integers, any computation involving them is a bit operation, and hence can be arithmetized with only a polynomial
blowup. We now move to the main argument of the proof: showing how to convert any arithmetic operations on the reals to
an arithmetic circuit computation in polynomial time. We are allowed four operations: addition, subtraction, multiplication,
and division. Clearly, the first three easily give rise to an arithmetic circuit. Whenever we see a division operator, we use
the famous result of Strassen (1973) to eliminate the division operator. Since, by assumption, the real RAM computes a
multilinear polynomial in the end, we know that the degree is bounded by n, and hence to remove the division operator we
only need to consider truncations up to degree n. Further, to avoid degree blowup on the intermediate nodes, we only need
to consider homogenous parts up to degree n. This can be achieved with only a polynomial blowup in size (Lemma 5.2 in
Saptharishi (2015)).

Finally, let us now look at the computation of the real RAM. First assume that the real RAM does not make any comparison
operations. Then the computation of the real RAM can be turned into an arithmetic circuit computing some polynomial q,
by the arguments above. Note, at each point we only compute the homogenous parts upto degree n. By the definition of
virtual evidence, q(x) coincides with p(x) for all x ∈ Qn where p is the multilinear polynomial representation of f . Since q
and p are polynomials, they also have to be the same as polynomials. Since p is multilinear, the obtained circuit is finally
multilinear by definition.

Now assume that the real RAM does make comparisons. We get some computation tree. At each leaf u, we compute
a polynomial qu. This polynomial coincides with p for each input x that takes the path to u. For each leaf u, the set of

15

The Limits of Tractable Marginalization

all such x form a semialgebraic set. Since all these sets together cover the whole Rn, there is at least one u such that
the corresponding semialgebraic set contains the product I1 × . . . × In of nonempty open intervals. On this product,
qu(x) = p(x), and therefore, qu and p are the same polynomials.

D. Succinctness Corollary
In the literature on knowledge compilation, representation languages for boolean functions are compared in their tractability
for various transformations and queries as well as in their succinctness. Marginalization corresponds to the query of counting
in the boolean setting (up to partial assignments), and Theorem 4.10 settles an open question on the succinctness of languages
with tractable counting. There are several well known languages that support polynomial time counting (e.g., OBDD, SDD),
but most of them are special cases of (and so not more succinct than) d-DNNF. Moreover, d-DNNF straightforwardly
translates (in linear time) into syntactically multilinear arithmetic circuits, thus falling within UFMAC. However, Koriche
et al. (2013) introduced the representation language Extended Affine Decision Tree (EADT) which supports polynomial
time counting, and they left open the succinctness relationship between d-DNNF and EADT. While we refer the reader to
Koriche et al. (2013) for full definitions, it is not hard to see that our function faff can be represented efficiently in EADT (in
fact even in the much less succinct though incomplete language AFF (Fargier & Marquis, 2008)). We are therefore able to
partially resolve the succinctness relationship between d-DNNF and EADT.

For a formula ϕ in some representation language L, let |ϕ| denote the size of ϕ (say, the number of bits in some reasonable
fixed representation). For representation languages L1, L2, we say L1 is at least as succinct as L2 (denoted L1 ≤s L2) if
there is a polynomial p such that for any ϕ2 ∈ L2, there exists a ϕ1 ∈ L1 with ϕ1 ≡ ϕ2 such that |ϕ1| ≤ p(|ϕ2|). Here
ϕ1 ≡ ϕ2 means that ϕ1 and ϕ2 represent the same boolean function.

Corollary D.1. Unless PH = Σ2, d-DNNF ≰s EADT.

Proof. Let faff be as defined in Equation (1), and so HMAR(faff) is #P-hard by Theorem 4.10. Note that faff can be
represented in polynomial size in either AFF or EADT. But, if faff can be represented by a polynomial size d-DNNF,
then by the algorithm of Proposition 4.5 we have HMAR(faff) ∈ P\poly. In particular, this gives #P ⊆ FP\poly and so
NP ⊆ P\poly, collapsing the polynomial hierarchy to Σ2 by the Karp-Lipton Theorem (Karp & Lipton, 1980).

16

