PROVIDENCE: an Efficient and Secure Ballot Polling Risk-Limiting Audit

Oliver Broadrick ^{1 5} Poorvi L. Vora¹ Filip Zagórski³⁴

¹Department of Computer Science, The George Washington University (odbroadrick@gmail.com)

³University of Wroclaw

⁴Votifica

⁵University of California, Los Angeles

August 12, 2023

Election security

What do we want?

▶ The right winner and strong evidence that they are the right winner

- ► Software independent
 - ► Configuration errors, bugs, hacking

Election security

An approach¹:

verifiedvoting.org

Compliance audits and tabulation audits

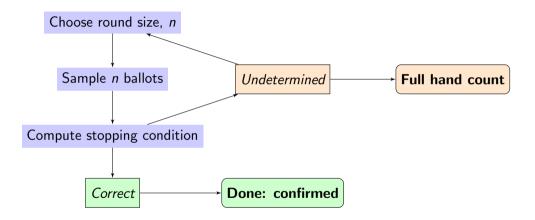
¹Strongly supported by a report of the National Academy of Sciences and the Voluntary Voting Systems Guidelines, the closest we have to standards for election technology.

Our Contributions

- ▶ Rigorous tabulation audit (risk-limiting audit) PROVIDENCE, the most efficient and secure of its kind
- Open source implementation, included in Arlo, most popular audit software
- ▶ Pilot use of Providence in the city of Providence, Rhode Island in 2022
- ► Comparison of Providence with other ballot polling RLAs with new workload models

 ${\sf Background}$

Risk-Limiting Audits (RLAs)


Assumption: successfully completed compliance audits

Risk-Limiting Audit (RLA) with risk limit α : A tabulation audit that, if the reported outcome is wrong, will detect and correct it with probability at least $1 - \alpha$.

Small α is good.

The **stopping probability** for a given sample is the probability that—given the reported outcome is correct—the audit confirms the result. Large stopping probabilities are good.

Ballot Polling RLAs

Existing ballot polling RLAs

Bravo

- ► Theory: the most efficient RLA (requires the smallest expected number of ballots) when ballots are sampled one at a time (ballot-by-ballot).
- Practice: in real audits, decisions are taken after many ballots are drawn (round-by-round).

Minerva

- Recent RLA designed for round-by-round use.
- ▶ In a first round chosen to give a typical 0.90 stopping probability, MINERVA requires
 - ▶ 50-80% as many ballots as BRAVO.
- Proven to be risk-limiting if all round sizes are predetermined, before the audit begins.

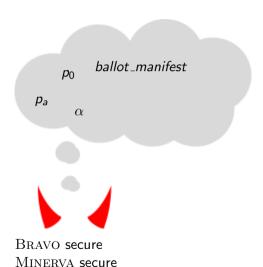
Problems We Will Address

- 1. Predetermined round sizes give inflexible audits
 - ▶ May be more efficient to choose future round sizes as a function of previous samples
- 2. Existing workload measures don't capture the cost of a round
 - ▶ We are unaware of any RLAs that have ever actually drawn a single ballot at a time

Our work

The Adversary in an RLA

Definition (α -RLA)

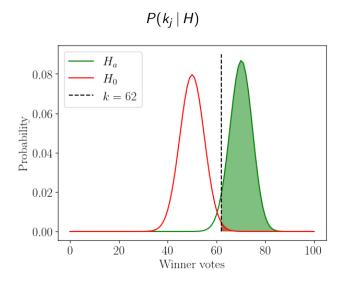

An audit A is an α -RLA if for samples $X \in \mathcal{X}$


$$\Pr[\mathcal{A}(X) = Correct \mid H_0] \leq \alpha,$$

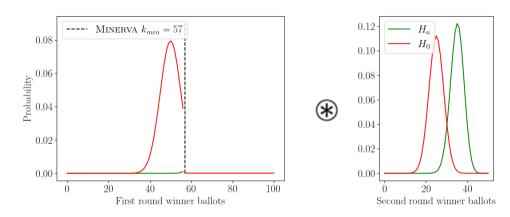
where H_0 corresponds to the incorrectly reported outcome *closest* to the reported outcome (i.e. a tie)

Adversarial goal: to increase the risk above α

$$\Pr[\mathcal{A}(X) = \text{Correct} \mid H_0] > \alpha$$

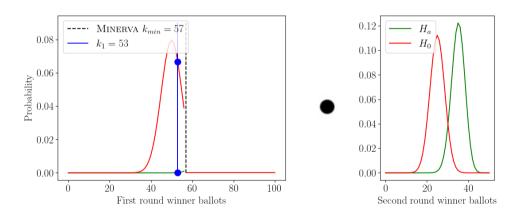

²Adversary names thanks to our anonymous *USENIX Security* shepherd.

Bravo



MINERVA

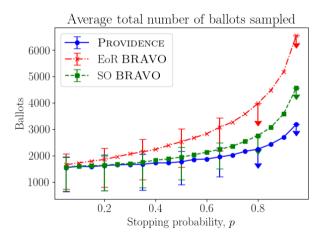
How Minerva proceeds


$$P(k_2 \wedge K_1 \leq k_{min,1} | H, n_1) =$$

Implicitly assumes that n_2 is the same for all k_1

How Providence proceeds

$$P(k_2 \wedge k_1|H) =$$


PROVIDENCE Properties

- ▶ Risk-Limiting in the presence of a strongly-round choosing adversary³
- ► Efficiency comparable to MINERVA, shown through simulations

³Arkady Yerukhimovich points out that random seeds should be freshly generated at the start of each round so that adversaries do not know which ballots will be drawn in a round before they choose the round size.

2016 Presidential contest in VA

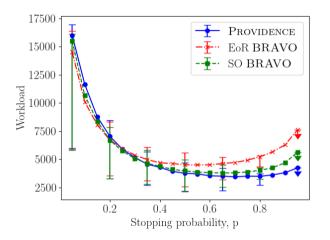
 $\mathsf{Margin} \approx 0.053$

Workload

With a round cost:

$$W(E_b, E_r) = E_b c_b + E_r c_r$$

 E_b : expected number of ballots


 E_r : expected number of rounds

 c_b : per ballot cost

 c_r : per round cost

Workload

$$W(E_b, E_r) = E_b c_b + E_r c_r$$
 with $c_b = 1$ and $c_r = 1000$

Conclusion

- ► PROVIDENCE: efficient and flexible
- Introduction of workload models accounting for the cost of a round
- Other round-size considerations (misleading samples and per-precinct cost)
- Piloted in the city of Providence, Rhode Island
- Implemented in Arlo, most commonly used RLA software

Thank you