
Risk-Limiting Audit PROVIDENCE and Round Size Considerations

by Oliver Broadrick

B.S. in Computer Science, May 2022, The George Washington University

A Thesis submitted to

The Faculty of
The School of Engineering and Applied Science

of The George Washington University
in partial satisfaction of the requirements

for the degree of Master of Science

May 21, 2023

Thesis directed by

Poorvi L. Vora
Professor of Computer Science

Filip Zagórski
Assistant Professor of Computer Science, University of Wrocław



© Copyright 2020 by Oliver Broadrick
All rights reserved

ii



Dedication

It’s all Poorvi’s fault.

iii



Acknowledgments

We are grateful to the Rhode Island Board of Elections for conducting a pilot PROV-

IDENCE RLA. The audit is named in recognition of their efforts. We thank Georgina

Cannan, Liz Howard, Mark Lindeman, and John Marion for their support of the pilot;

Audrey Malagon for useful information on audits; and an anonymous USENIX Security

2023 shepherd for very useful guidance on the presentation of our work. Conversations with

Philip B. Stark provided much insight.

iv



Abstract

Risk-Limiting Audit PROVIDENCE and Round Size Considerations

A Risk-Limiting Audit (RLA) is a statistical election tabulation audit with a rigorous

error guarantee: viewed as a binary hypothesis test with the null hypothesis being that

the announced election outcome is incorrect, its Type I error is bounded above, whatever

the true election tally. We present ballot polling RLA PROVIDENCE1, an audit with the

efficiency of RLA MINERVA and flexibility of RLA BRAVO, and prove that it is risk-limiting

in the presence of an adversary who can choose subsequent round sizes given knowledge of

previous samples. We describe a measure of audit workload as a function of the number

of rounds, precincts touched, and ballots drawn and quantify the problem of obtaining a

misleading audit sample when rounds are too small, demonstrating the importance of the

resulting constraint on audit planning. We describe an approach to planning audit round

schedules using these measures and present simulation results demonstrating the superiority

of PROVIDENCE.

We describe the use of PROVIDENCE by the Rhode Island Board of Elections in a

tabulation audit of the 2021 election. Our implementation of PROVIDENCE in the open

source R2B2 library has been integrated as an option in Arlo, the most commonly used RLA

software in the United States.

1A shorter version of this work [6] will appear at USENIX Security 2023.
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Chapter 1: Introduction

It is well-known that electronic voting systems are vulnerable to software errors and

manipulation which may be undetected. Errors and/or manipulation may not always change

an election outcome, but we want to know when they do. Software independent voting

systems [19, 18] are ones where an undetected change in the software cannot lead to an

undetectable change in the election outcome. The use of software-independent voting

systems is, however, not sufficient to ensure election integrity. The evidence-based elections

[22] approach goes further and requires that election outcomes be supported by strong

affirmative evidence. The evidence is generated during the election and publicly examined

at the end, enabling citizens to determine whether it provides strong support of the election

outcome or is not sufficiently convincing. One approach to evidence-based elections is to use

voter-verified paper ballots, store them securely, and perform public audits—a compliance

audit to determine whether the ballots were stored securely and procedures were followed;

and a rigorous tabulation audit, known as a risk-limiting audit (RLA) [11], to determine

whether the outcome is correctly computed from the stored ballots.

As a formalized approach to the examination of evidence supporting vote tabulation, an

RLA is an important part of an evidence-based election. When correctly implemented, it

serves to vastly improve the trustworthiness of the election.

Significant efforts by nationwide organizations (such as Verified Voting, Brennan Center

for Justice, Common Cause and Democracy Fund), local organizations, citizen advocates

and experts have led to great progress towards the use of RLAs. Nonprofit VotingWorks

has developed open-source election audit software, Arlo [25], and provides training in its

use. Six states (Colorado, Georgia, Nevada, Pennsylvania, Rhode Island, Virginia) now

require RLAs; three have statutory pilot programs (Indiana, Kentucky, Texas); four allow

RLAs to satisfy a more general audit requirement (California, Ohio, Oregon, Washington);
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and two have an administrative pilot program (Michigan, New Jersey) [24]. The effort to

broaden the reach of RLAs continues, as election officials appear very keen to improve the

trustworthiness of the elections they administer. RLAs are nowhere close to being routine

though, and difficulties could reverse the gains that have been made.

1.1 Background on RLAs

A tabulation audit will either end with a declaration that an election outcome is correct,

or escalate to a full hand count. The integrity of an audit may be judged by how it deals with

incorrect outcomes. A risk-limiting audit (RLA) guarantees a minimum probability that it

will perform as it is supposed to (escalate to a full hand count) if the outcome is incorrect.

Equivalently, this is also a guarantee of a maximum probability with which it will perform

erroneously (declare the audit correct) when the outcome is incorrect. The risk limit of an

RLA is the (guaranteed) maximum probability that an incorrect election outcome would be

declared correct. Lower risk limits are better.

There are three types of RLAs: ballot comparison RLAs, batch comparison RLAs and

ballot polling RLAs. This paper focuses on ballot polling RLAs which have been used in

a number of US state pilots (California, Georgia, Indiana, Michigan, Ohio, Pennsylvania,

Virginia and elsewhere), real statewide audits (Georgia, Virginia) [24] and audits of smaller

jurisdictions, such as Montgomery County, Ohio [29]. Ballot and batch comparison RLAs

are described in Chapter 1.2.

1.1.1 The workflow of a ballot polling RLA

A ballot polling RLA [11] is based on manual examination of the sampled ballots, and

does not require any information from the tabulating system other than the tally. More detail

about the storage of ballots is required, however: a complete ballot manifest (a list of ballot

storage containers and the number of ballots in each) which enables the creation of a well

defined list of the ballots and their locations (the fifth ballot in box number 20, for example)
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to enable the sampling of specific ballots from the list.

All RLAs draw one or more ballots at a time; each such set of ballots is referred to as a

round. We use notation and terminology from [29, 28, 5, 12] and also assume ballots are

drawn with replacement.

Ballot polling audits proceed as follows.

1. The ballot manifest is published.

2. A first round size [29] is chosen.

3. Ballots on the ballot manifest are sampled uniformly at random, with replacement,

using a pseudorandom number generator—typically seeded by a natural source of

randomness like dice rolls.

4. The physical ballots are found and manually interpreted; the interpretations are

recorded.

5. The stopping condition A , a function of the manual interpretations of the current

cumulative sample of ballots X , is computed. It outputs:

(a) Correct: stop the audit or

(b) Undetermined: sample more ballots.

Election officials may choose to abort this procedure and go to a full hand count at

any time and should have a plan for how to decide whether to do so; we discuss this

in more detail below and in Chapter 2.

6. If more ballots are to be drawn, the next round size is chosen, and the audit goes back

to step 2.

Round sizes, including the first one, may be computed based on a desired probability of

audit completion at the end of the round, and may take into consideration loose estimates

of the resources required. For RLAs required by statute or legislation, the successful
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completion of the RLA (or a full hand count confirming the certified outcome) is usually

necessary before certification1 and certification deadlines would play a large role in round

size and hand count decisions.

1.1.2 The audit model

An audit is typically defined as a binary hypothesis test. If the null, H0, is defined as

the incorrect outcome hardest to detect (generally a tie, see [23]), we have the following

definition of an RLA.

Definition 1 (Risk Limiting Audit (α-RLA)). An audit A is a Risk Limiting Audit with risk

limit α iff for sample X

Pr[A (X) = Correct |H0]≤ α

Definition 1 is valid at the end of the RLA, and not at the end of each round. Thus it is

not the case that an incorrect election will pass the audit if a sufficient number of rounds is

drawn. In fact, the larger a sample, the more accurate the estimate of election correctness can

be, and the more the audit will diverge from one that would stop (see the example below). It

is possible to declare an incorrect outcome as correct even after drawing a large sample, but

a good audit is less likely to make this error.

While the risk limit is an error measure, the stopping probability for a certain round size

characterizes the efficiency of the audit if the outcome is correct.

1.1.2.1 Full hand count

It is worth noting here that if election officials do not have a plan for when they will

move to a full hand count, and the election outcome is incorrect, at least a fraction (1−α)

of the audits will never stop, and new rounds will continue to be drawn. See Figure 4.1

1If an RLA were performed after certification and determined that the outcome was incorrect, there may
not be a legal means of changing the outcome and this could significantly impact citizen confidence. For
example, till recently, the state of Virginia required RLAs but they were to be performed after certification and
could not be used to change an outcome. This was corrected through new legislation passed in April 2022.
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in Chapter 4 for the results of 10,000 audit simulations of PROVIDENCE on tied elections

(risk limit of 0.1, across election margins of 0.05 and larger in the statewide contests for US

President in 2020). Observe that, for each margin studied, more than 90% of the audits do

not stop after five rounds. To illustrate this idea, we present two example simulations from

among those used to compute the statistics reported in Chapter 4.

A total of 11,315,056 votes were cast in the 2020 US President contest in the state of

Texas [8]; candidate Trump won with 5,890,347 votes, and the second highest vote count

was that of candidate Biden, who received 5,259,126 votes, for a margin of 0.0566 in the

pairwise contest. A pairwise contest between two candidates treats invalid votes and those

received by other candidates as irrelevant to determining which of the two won the pairwise

contest. Its margin is the difference between their vote counts as a fraction of the sum

of their votes. Ballot polling audits used to audit government elections (such as BRAVO,

MINERVA and PROVIDENCE) audit a multi-candidate contest by conducting multiple audits

of the pairwise contests between the winner and every other candidate.

A first round size of 2,217 corresponds to a stopping probability of 0.9 and a risk limit

of α = 0.1 for PROVIDENCE (see [29] for a description of how first round size may be

computed, MINERVA and PROVIDENCE are identical in the first round). The audit A

computes the PROVIDENCE ratio (the likelihood ratio of the hypothesis test, which is a

function of the number of votes for the two candidates in the sample, see Chapter 3.3 for

more detail). If the ratio is denoted ω , the audit stops when ω−1 ≤ α , or equivalently (see

Definition 6) if ω ≥ α−1.

In Chapter 4 we describe the results of 10,000 audit simulations for each hypothesis,

assuming that the underlying true vote distribution is (a) as announced and (b) tied. We

describe below a single illustrative simulation from each hypothesis.

The first simulation assumed that the tally is correct and resulted in 1,138 votes for
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Round Cumulative Trump Biden ω−1

No. Round Size
1 2,217 1,111 1,079 0.256
2 5,970 2,940 2,953 4.251
3 16,685 8,281 8,171 3,150
4 35,096 17,320 17,264 380,220,376
5 76,979 37,943 37,868 2.5e+22

Table 1.1: A simulation of a PROVIDENCE audit of a tied contest with an announced margin
of 0.0566, and α = 0.1. Each round size is computed for a conditional stopping probability
of 0.9. The stopping condition is ω−1 ≤ α .

Trump and 1,054 for Biden (the rest were irrelevant votes). The audit stopped because:

ω
−1 = 0.047 < α

The second simulation assumed a tied election and did not stop at the end of five rounds.

Table 1.1 lists the cumulative round sizes, cumulative votes for both candidates and the

inverse PROVIDENCE ratio after each draw. Each round size was chosen for a conditional

stopping probability of 0.9, given that the audit did not stop so far. For example, this

corresponds to an approximate probability of 0.09 that the audit stops in the second round

(that it does not stop in the first round and stops in the second), and so on.

To avoid a scenario where election officials fruitlessly draw round after round hoping the

audit will stop when the election outcome is incorrect, it might be worthwhile for election

officials to determine, before the audit begins, the latest date by which either: the audit stops,

or a hand count begins, so as to be completed before certification.

1.1.2.2 The adversary in an RLA

The goal of the adversary is to increase the true risk beyond the declared risk limit—that

is, given an incorrect outcome, make the audit declare it as correct with a chance larger

than the risk limit. An audit is an RLA only if there is a proof of its risk-limiting property.

Hence, at the very least, the adversary would need to invalidate an assumption of the proof
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to obtain:

Pr[A (X) = Correct |H0]> α

1.2 Related work

1.2.1 Ballot polling RLA process

Bernhard provides a good description of the RLA and its assumptions, and also describes

the process on the ground [2].

Election officials typically draw ballots in large round sizes, see for example [16, 7]. Note

also that, in addition to allowing users to directly enter a round size or choose the expected

number of ballots drawn by BRAVO, Arlo provides choices of stopping probabilities of 0.9,

0.8 and 0.7. For the two audits we attended, election officials chose stopping probabilities

of 0.9 and 0.95. Estimates of round sizes with stopping probability 0.9 for each state in

the 2020 US Presidential election may be found in [29]. Thousands of ballots is quite a

common estimate; many estimates are as large as tens and hundreds of thousands of ballots.

We are not aware of any ballot polling RLA performed on ballots cast in a governmental

election that drew ballots one at a time (though the stopping condition can be computed one

ballot at a time, the ballots are drawn in rounds).

1.2.2 R2 and B2 audits and the classical BRAVO audit

A round-by-round (R2) audit is the general audit, where the decision of whether to draw

more ballots or not is taken after drawing a round of ballots. A ballot-by-ballot (B2) audit is

the special case of round size one—when the decision is made after each ballot is drawn.

The popular BRAVO audit [12] requires the smallest expected number of ballots when the

announced tally of the election is correct, and stopping decisions are taken a ballot at a time

(that is, when it is used as a B2 audit). However, BRAVO cannot be used as a B2 audit in the

scenarios described in the previous paragraph.
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For use as an R2 audit, the BRAVO stopping condition can be applied once at the end of

each round (End-of-Round (EoR)), or retroactively after each ballot drawn if ballot order

is retained (Selection-Ordered (SO)). SO BRAVO is closer to the original B2 BRAVO, and

requires fewer ballots on average than EoR BRAVO. But it requires the additional effort of

tracking the order of ballots, and should be expected to be inefficient because it does not use

the information in the ballots drawn towards the end of the round.

1.2.3 Newer ballot polling audits

The MINERVA audit [29, 28] does not need ballot order and relies only on sample and

round tallies. It was developed for use with large first round sizes, and has been proven to

be risk limiting when the round schedule for the audit is fixed before any ballots are drawn.

First round sizes for a stopping probability of 0.9 when the announced tally is correct have

been shown to be smaller than those for EoR and SO BRAVO for a wide range of margins.

The ALPHA audit [20] generalizes BRAVO to gain efficiency in cases where the reported

outcome is correct but the reported margin is erroneous.

1.2.4 Simulations

Ballot polling audit simulations provide a means of educating the public and election

officials [21] and understanding audit properties [14, 13, 3, 10, 12]. There is work measuring

the amount of time taken to examine a single ballot [7]. Simple workload estimates may be

obtained by using the number of ballots drawn [17], a more thorough workload estimation

model includes the time taken to access individual ballots[1].

Zagórski et al. present first round simulations demonstrating that MINERVA draws

fewer ballots than SO BRAVO in the first round for large first round sizes when the true

tally is as announced. Broadrick et al. provide further simulations showing that MINERVA

requires fewer ballots than EoR and SO BRAVO over multiple rounds and for smaller

stopping probability. As expected, the advantage of MINERVA decreases for smaller stopping
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probability (smaller round sizes) as it approaches a B2 audit, for which BRAVO is known to

be most efficient.

1.2.5 Ballot and batch comparison audits

In a ballot comparison RLA [11], the manual interpretation of each sampled ballot is

compared to the corresponding Cast Vote Record (CVR), which is the machine interpreta-

tion of the ballot. Ballot comparison RLAs require the fewest ballots of all known RLA

approaches, but also require a means of identifying the CVR corresponding to a particular

ballot. Not all voting systems record CVRs and their use can present privacy challenges. A

batch comparison RLA [7] samples batches of ballots (typically, a batch is a storage box

of ballots) and compares the manual tally of each sampled batch with the announced tally

of that batch. Batch comparison typically requires the sampling of a very large number of

ballots, larger than polling audits except for small enough margins.

In this work, we consider ballot polling RLAs only and thus compare PROVIDENCE

with BRAVO and MINERVA.

1.3 Gaps in prior work and our contributions

We describe relevant gaps in current knowledge of audits and then describe our contribu-

tions.

1.3.1 Limitations of MINERVA

Zagórski et al. prove that MINERVA [29] is risk-limiting when the number of relevant

ballots drawn in each round is pre-determined before any ballots are examined. They do

not address the case of a stronger adversary (such as an audit insider) who can determine

the size of the next round after knowing what votes are on the ballots sampled thus far. An

open question about MINERVA is whether its RLA proof holds in this case. Can the audit

insider increase the audit’s error probability beyond its declared risk limit? Or is there no
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probabilistic adversarial advantage to being able to compute next round sizes after knowing

the drawn sample? We do not answer this question, and to our knowledge, it remains open.

Until MINERVA is proven to be risk-limiting to a given risk limit for the adversary who

can determine next round size after examining the current sample, it may not be used in

audits whose round sizes are not pre-determined. This presents a major limitation, because

the stopping probability of the next round is better estimated using information of the sample

drawn thus far, but this would not be allowed for MINERVA. The current implementation

of MINERVA integrated as an option in Arlo uses a fixed multiplier of the current round

size to compute the next round size, thus allowing the first round to be computed as desired,

and fixing the next round sizes thereafter2. This could lead to the drawing of too few or too

many ballots and greatly constrains audit planning.

The risk limit for B2, EoR and SO BRAVO is fixed independent of whether next round

sizes are determined with or without knowledge of the current sample. This allows BRAVO

audits the flexibility of choosing smaller subsequent round sizes if the sample drawn so

far is a “good” sample. An open question is whether a ballot polling RLA exists with the

efficiency of MINERVA and this flexibility of BRAVO.

1.3.2 Limitations in existing workload measures

A major limitation of our understanding of the ballot polling problem as a community

is that we use the number of ballots drawn or values proportional to this number [14, 1, 7]

as measures of the workload of an audit. If this were a correct measure of the workload

of an audit, we would want to use B2 audits (round size is one) and make decisions about

stopping the audit after drawing each ballot, because this leads to the smallest expected

number of ballots. As described in 1.2, election officials, on the other hand, greatly prefer

drawing many ballots at once. From conversations with election officials and staff members

2Note that every draw may contain irrelevant ballots, and thus the true number of relevant ballots can never
be predetermined. However, because this is random, and not controllable by an adversary once the size of the
draw is fixed, we assume that differences in the number of ballots average out, and that a fixed draw size is
sufficient, though this is not explicitly proven in [29].
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of Verified Voting, Brennan Center and Common Cause who have been training election

officials to perform RLAs, we estimate that this preference is likely due to the following.

Firstly, each round has an overhead workload as well, including setting up the round and

communicating among the various localities involved in conducting the audit (for example,

audits of statewide contests involve the drawing of ballots at county offices where the ballots

are stored). Secondly, there is an overhead to finding a storage box and unsealing it. For

large round sizes, multiple ballots may be drawn at once from a box, and the number of

boxes retrieved is smaller than the number of ballots (storage boxes commonly contain many

hundreds of ballots each). Finally, in the current environment of misinformation, election

officials fear a misleading audit sample (with more votes for an announced losing candidate

than the winner), preferring to structure audits to reduce the chances of such samples, thus

implicitly choosing larger round sizes.

Thus the workload of an audit is not simply a linear (or affine) function of the number of

ballots drawn. Relatedly, an optimal round schedule is not completely determined by the

expected number of ballots drawn. It depends on other variables as well, the consideration

of which is necessary while planning an audit.

1.3.3 Our contributions

Our primary contribution is a new RLA, PROVIDENCE, which gives the efficiency of

MINERVA and is also resistant to an adversary who can choose the next round size after

knowing the current sample. BRAVO is a very flexible audit enabling audit planning; with

the introduction of PROVIDENCE, similar planning is possible with greater efficiency. In a

contest with a narrow margin (in the 2020 US Presidential election, eight states had margins

smaller than 0.03) the difference in number of ballots sampled using PROVIDENCE over

BRAVO could correspond to many days of work which would need to be completed before a

certification deadline.

The stopping condition for MINERVA does not take into account the sample obtained
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in previous rounds. The risk limit is estimated through weighted averages across multiple

rounds, assuming that round sizes do not depend on the previous sample. Attempting to

simplify the proof of MINERVA’s risk-limiting property, we were able to define a different

audit PROVIDENCE. The RLA proof for PROVIDENCE does not make an assumption about

round sizes.

We provide the following:

1. Proof that PROVIDENCE is an RLA and resistant to an adversary who can choose next

round sizes after knowing the current sample.

2. Simulations of PROVIDENCE, MINERVA, SO BRAVO, and EoR BRAVO which show

that PROVIDENCE uses number of ballots similar to those of MINERVA, both fewer

than either version of BRAVO.

3. Results and analysis from the use of PROVIDENCE in a pilot audit in Rhode Island.

4. A model of workload that includes the overhead effort of each round and the overhead

effort of retrieving a storage unit of ballots; simulations that illustrate the use of this

model to compare the different types of ballot polling audits and to plan an audit with

minimal workload.

5. An analysis of round size as a function of the maximum acceptable probability of a

misleading audit sample.

6. Open source implementation of PROVIDENCE and audit planning tools. The imple-

mentation of PROVIDENCE has been integrated as an option in Arlo.

PROVIDENCE may be used in any audit where sampling is with replacement and audited

contests may be expressed as pairwise plurality contests: for example, it can be used in

plurality and majoritarian elections.
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1.3.4 Organization

Chapter 2 provides preliminaries on the BRAVO and MINERVA audits. Chapter 3

describes the PROVIDENCE audit, Chapter 4 the simulations comparing the number of

ballots drawn using various ballot polling audits, and Chapter 5 the use of PROVIDENCE

in an audit carried out by the Board of Elections of Rhode Island. Chapter 6 presents our

workload model and describes its use for a ballot polling audit using details of the 2016

US Presidential election in the state of Virginia, while Chapter 7 introduces the notion of a

misleading sample, illustrating it on the Virginia details as an example. Our conclusions, the

availability of an audit implementation, and a brief description of possible future work are

given in Chapter 8.
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Chapter 2: Preliminaries on ballot polling RLAs

2.1 BRAVO and MINERVA

BRAVO and MINERVA are modeled as binary hypothesis tests where the null hypothesis

H0 corresponds to a tied election and the alternative hypothesis Ha to an election tally as

announced. (When the number of ballots is odd, H0 corresponds to the announced loser

winning by one ballot.)

The stopping conditions of BRAVO and MINERVA rely on the following ratios.

Definition 2 (BRAVO Ratio). The BRAVO audit uses the ratio σ . Consider a sample size of

n ballots with k for the reported winner. The proportion of ballots for the reported winner

under the alternative hypothesis and null hypothesis are pa and p0 respectively.

σ(k, pa, p0,n),
pk

a(1− pa)
n−k

pk
0(1− p0)n−k

(2.1)

In BRAVO, p0 =
1
2 . A BRAVO audit outputs correct if and only if

σ(k, pa,
1
2
,n)≥ 1

α
.

If K is the random variable indicating the number of ballots in the sample that contain a

vote for the reported winner, it is easy to see that the ratio σ is the likelihood ratio:

Pr[K = k|Ha,n]
Pr[K = k|H0,n]

=

(n
k

)
pk

a(1− pa)
n−k(n

k

)
(1

2)
n

= σ(k, pa,
1
2
,n)

BRAVO is an instance of Wald’s Sequential Probability Ratio Test (SPRT) [27]. Applying

the general SPRT to RLAs, there would be a third output, Full Manual Hand Count, in

addition to Correct and Undetermined. The test requires an additional error parameter β (of

audit error when the outcome is correct): the probability of requiring a (unnecessary) hand
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count when the outcome is correct. The test is:

A (X) =



Correct σ(k, pa, p0,n)≥ 1−β

α

Hand Count σ(k, pa, p0,n)<
β

1−α

Undetermined else

(2.2)

An example of the above use is [11]. In the more recent literature, for example [12],

ballot polling audits do not include this possibility (i.e. they set β = 0) in order to give

maximum flexibility to election officials in choosing when to proceed to a full manual count.

For a given election, σ is a function only of k, and increases with k. Any non-zero value

of β would reduce the value σ is being compared with, and allow A to declare Correct

for lower values of k. Thus β = 0 is the most stringent of this form of audit. The choice

of going to a full hand count when β = 0 will only reduce the risk because it never results

in an error (by definition, the true election outcome is one that would be obtained by a full

manual hand count of the ballots) and prevents future errors.

A manual hand count presents numerous logistical challenges. The decision to move

to one would be influenced by the certification deadline1, the estimated number of human

hours required for another round, the logistical costs of a full hand count, and the impact

of any decision on citizen confidence. A better workload model would better inform the

decision. Election officials should announce ahead of time their plans for when they would

abort the audit procedure and go to a full hand count, justifying it with an eye towards

completing certification requirements. This would provide a more transparent process and

1As mentioned earlier, audits going towards statutory or legal requirements would need to be completed by
the certification deadline. Pilot audits, performed after certification, usually end after a single round or fixed
number of rounds, providing a measured risk (the statistical p-value) at the end of the round, and no decision
regarding a full hand count needs to be made.
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protect them from political pressures.

Where BRAVO uses the ratio of the values of the probability distribution functions,

MINERVA uses the ratio of their tails. Now it becomes useful to have shorthand for a

sequence of cumulative round sizes and the corresponding sequence of cumulative winner

ballot tallies. We use:

nj , (n1,n2, . . . ,n j) and kj , (k1,k2, . . . ,k j)

Also, let K j be the random variable indicating the cumulative number of ballots in the sample

after the jth round is drawn.

Definition 3 (MINERVA Ratio). The R2 MINERVA audit uses the ratio τ j. We use cumulative

round sizes nj , with corresponding kj ballots for the reported winner in each round. The

proportion of ballots for the reported winner under the alternative hypothesis and null

hypothesis are pa and p0 respectively.

τ j(k j, pa, p0,nj ,α),

Pr[K j ≥ k j∧∀i< j(A (Xi) 6= Correct) | Ha,nj ]

Pr[K j ≥ k j∧∀i< j(A (Xi) 6= Correct) | H0,nj ]

(2.3)

Note that τ depends only on the most recent cumulative votes for the winner, k j and not

on older values. Here, if we were to condition the ratio on the vector of cumulative winner

votes k j−1, or, equivalently, on the most recent cumulative winner votes k j−1, we would get

the binomial distributions and be running a new first round each time.

The ratios for BRAVO and MINERVA are for two candidates. As mentioned when

describing the example in Chapter 1.1.2, audits of multiple-candidate contests are treated

as multiple audits of the pairwise contests between the announced winner and all other

candidates.
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2.1.1 ATHENA

For some parameters (contest, risk-limit, round sizes, etc), a MINERVA audit stops –

confirming the reported outcome – for cumulative winner ballot tallies which are more

probable under the null hypothesis. MINERVA is still risk-limiting in these cases. That said,

one may choose in addition to the MINERVA stopping rule, to require that the likelihood ratio

of BRAVO be above 1
δ

for some δ . An audit enforcing the MINERVA stopping condition and

this additional bound on the likelihood ratio is called an ATHENA audit [28]. For instance,

to require that the audit only stop for samples that are more likely under the alternative

hypothesis, δ = 1.

In particular, in the jth round, for reported proportion of winner ballots pa, vector of

cumulative round sizes nj, vector of cumulative winner ballot tallies kj, and risk-limit α , an

ATHENA audit stops if and only if:

1. a MINERVA audit for the same parameters stops, and

2. σ(k j, pa,
1
2
,n j)≥

1
δ
.

While δ = 1 requires that the audit stops only for samples more probable under the

alternative hypothesis, smaller values of δ will be even stricter. Note that an (α,α)-ATHENA

audit (i.e. δ = α) is an EoR BRAVO audit with risk-limit α .

2.2 Minimum winner ballots

It turns out that the stopping conditions for both BRAVO and MINERVA (and ATHENA)

in any round can be expressed as a comparison test where the number of winner ballots

is compared with a threshold, above which the audit stops. That is, for any margin, risk

limit, round, and for either BRAVO and MINERVA, there exists some kmin such that the

audit’s stopping condition is equivalent to requiring that the number of winner ballots in

the sample be greater than kmin. Note that a ballot polling RLA need not have this property;
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the audit could stop only for even numbers of winner ballots, or some other arbitrary rule,

and still abide by the risk-limiting constraint. BRAVO and MINERVA, however, do have this

appealing property, as shown formally in [29].

From here forward, we will use kmin, j to refer to the minimum number of winner ballots

required to meet the stopping condition in round j (other parameters being clear from

context), or simply kmin if the round number too is clear from context.

2.3 Intuition for MINERVA

To build intuition, we use a toy example. Consider a two candidate contest with a

reported margin of 0.4. That is, the reported winner is reported to have received a proportion

of 0.7 of the total ballots cast. Election officials plan to conduct a ballot polling RLA with

risk limit α = 0.1. For the first round, they will draw n1 = 100 ballots. Figure 2.1 shows

the probability distributions over the number of winner votes for both the alternative and

null hypotheses. The BRAVO kmin is shown as a vertical, dashed line, and the corresponding

probabilities of kmin under each hypothesis are highlighted with thick markers in the shape

of the letter ’x’. A BRAVO audit stops (confirming the reported result) if the ratio of these

two points is above a threshold, 1
α

.

Figure 2.2 shows the same distributions but with the MINERVA kmin. While the BRAVO

audit requires that the ratio of the two probabilities of k be above 1
α

in order to stop,

MINERVA requires that the ratio of the tails of the distributions starting at k be above 1
α

.

Observe that the tails of the distribution starting at kmin correspond to the probability of

drawing a number of winner ballots at least kmin. Equivalently, this is the probability that

the audit stops in this round. We refer to the probability of stopping assuming the alternative

hypothesis as the stopping probability. Recall that the probability of stopping under the

null hypothesis is the risk. Thus, in the first round, MINERVA bounds by 1
α

the ratio of the

stopping probability to the risk.

Suppose that the MINERVA audit is used, and some number k1 < kmin winner ballots
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Figure 2.1: Probability distributions over the number of winner ballots K1 in a first round
of size n1 for our toy example. The rightmost (green) curve corresponds to the alternative
hypothesis (and thus is centered roughly at 0.7), whereas the leftmost (red) curve corresponds
to the null hypothesis (and is centered at 0.5).
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are drawn in the first round, and a new round of n2 ballots are to be drawn. MINERVA

proceeds by computing a new distribution: the probability that K2 = k2 and that the audit

has not previously stopped, assuming the second round size is n2. This distribution is the

convolution of the a binomial distribution for the marginal, second round sample with the

first round’s distribution over those values of k for which the audit would not have stopped.

Implicitly, this assumes that regardless of the value of K1, the audit would still proceed to a

second round of size n2.

The MINERVA stopping rule is extended to future rounds in this way in order to give a

nice property: the ratio of the stopping probability to risk in every round is bounded below

by 1
α

. If S j is the stopping probability in round j (the probability that the audit stops in

round j and no earlier, assuming the alternative hypothesis) and R j is the risk in round j

(the probability that the audit stops in round j and no earlier, assuming the null hypothesis),

then the MINERVA stopping condition enforces the following constraint for all j:

S j

R j
≥ 1

α

Equivalently, R j ≤ αS j. Note that ∑ j R j is the total risk of the audit and ∑ j S j is the total

stopping probability of the audit. Taking the sum over all j, we get

∑
j

R j ≤ α ∑
j

S j =⇒ ∑
j

R j ≤ α.

In other words, extending the tail ratio of MINERVA to future rounds in this way, so as to

preserve this property of the audit, gives MINERVA its risk-limiting property. What we will

see with PROVIDENCE is that this is not the only way to extend the tail ratio of MINERVA

to future rounds while still preserving this property. Moreover, the MINERVA stopping

condition achieves this nice property in a restrictive way; it assumes that next round sizes

are constant, an undesirable property in practice.
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Figure 2.2: Probability distributions over the number of winner ballots K1 in a first round of
size n1 for our toy example. The MINERVA value of kmin is shown, and the corresponding
tails of the distributions shaded.
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Chapter 3: PROVIDENCE

In this Chapter we describe the adversarial model and introduce the stopping condition

of PROVIDENCE, proving some of its properties.

3.1 Adversarial model for RLAs

Detailed descriptions of best practices for post-election audits may be found in [9, 4].

For our purposes, we will assume that best practices are followed: the paper trail consists of

hand-marked paper ballots and is secured; a public compliance audit is carried out before

the RLA to ensure that the processes for securing the paper trail were followed; voter

authentication and registration processes are verified; and the risk-limiting audit is public.

We will further assume that all software used in the RLA is open source and well-defined,

so its output may be reproduced and thus verified by an observer wishing to do so with their

own software.

Referring to the ballot polling audit steps described in Chapter 1.1.1, we further assume

that the ballot manifest is verified by the compliance audit; a secure PRNG is used; the

seed is generated uniformly at random in a public process; the process of locating ballots is

publicly observable and the located ballots can be viewed by the public. Because the PRNG

is well-defined, as is the stopping condition, we may assume that the stopping condition is

correctly computed, because it can be checked by the public through knowledge of the seed

and the drawn ballots. Thus the only variable is round size.

We define a weakly round-choosing adversary as one who can choose the first and

subsequent round sizes before the audit begins and a strongly round-choosing adversary

as one who can choose any round size at any time (before, of course, that particular round

begins). In particular, a strongly round-choosing adversary may use information about the

sample drawn thus far to decide the next round size, but a weakly round-choosing adversary
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may not.

Definition 4 (Weakly Round-Choosing Adversary). A weakly round-choosing adversary

may choose the first and consequent round sizes as a pre-determined function of audit

parameters. That is, the jth round size is a function

n j(α, pa, p0,ballot_mani f est)

determined before the audit begins.

Definition 5 (Strongly Round-Choosing Adversary). A strongly round-choosing adversary

may choose any round size as any function of audit parameters and all preceding samples.

That is, the first round size is a function

n1(α, pa, p0,ballot_mani f est),

and for all rounds j ≥ 2, the round size is a function

n j(α, pa, p0,ballot_mani f est,k j−1,n j−1)

The functions n j, j ≥ 1 may be chosen at any time before the jth round begins.

3.2 Intuition behind the properties of PROVIDENCE

Before defining PROVIDENCE, we give some intuition for how it is designed to avoid

the problem of MINERVA.

Consider any ballot polling audit in round j, designed to stop for some value of K j = k j

smaller than the round size. In general, if k j is large, the probability of this value of K j given

a correct outcome, Pr[K j = k j |H1], is larger than the corresponding risk—Pr[K j = k j | H0],

the probability of this value of K j given a tie. The risk is generally not zero, however. Thus,
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corresponding to each such value of K j, a risk is incurred. To obtain the total risk for the

round, one adds the risks corresponding to each value of K j for which the audit can stop,

weighted by the probability of drawing that value of K j. The stopping condition may provide

relationships among the various quantities. To obtain the risk of the entire audit, one sums

the risks of each round.

In MINERVA, the stopping condition relates the weighted average of the risks to the

weighted average of the stopping probabilities over all values of K j for which the audit stops,

for a given round size. Separate relationships between risk and stopping probability are

not available for individual values of K j. If the next round size depends on K j, expressions

relating the risks are not available, and we are not able to obtain an expression bounding the

sum of the risks across rounds. Thus we are not able to determine if MINERVA is an RLA in

this case, or if it is vulnerable to the strongly round-choosing adversary [29, 28, 20].

In PROVIDENCE, we choose a stopping condition that applies separately to the risk and

stopping probabilities for each value of K j, avoiding the problem of MINERVA, and allowing

for optimal round size choices, which depend on the drawn sample. The PROVIDENCE

audit is risk-limiting even if a strongly round-choosing adversarial auditor determines round

sizes after drawing the sample, and next round size computations may use knowledge of the

current sample.

3.3 Definition

Definition 6 ((α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE). For cumulative round size n j for

round j and a cumulative k j ballots for the reported winner found in round j, where samples

are drawn with replacement, the R2 PROVIDENCE stopping rule for the jth round is:

A (X j) =

 Correct ω j(k j,k j−1, pa, p0,n j,n j−1)≥ 1
α

Undetermined else
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where ω1 , τ1 and for j ≥ 2, we define ω j as follows:

ω j(k j,k j−1, pa, p0,n j,n j−1),

σ(k j−1, pa, p0,n j−1) · τ1(k j− k j−1, pa, p0,n j−n j−1)

(3.1)

Notice that PROVIDENCE requires the computation of τ j for j = 1 and no other values

of j. The value of τ1 is simply the ratio of the the tails of the binomial distributions (the

distributions are binomial because the sampling is with replacement) for the two hypotheses

and can be fairly efficiently computed. The computation of τ j for j ≥ 2, as required in

MINERVA, relies on the convolution of two probability distribution functions and is hence

computationally considerably more expensive. Smaller computational complexity makes

audit planning and analysis using simulations as in Chapter 6 more feasible.

Notice also that PROVIDENCE and MINERVA are identical for j = 1.

3.4 Proof of the risk-limiting property

We now prove that PROVIDENCE is risk-limiting against a strongly round-choosing

adversary using lemmas from basic algebra which are given in Appendix A.

Theorem 1. (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE is an α-RLA in the presence of a

strongly round-choosing adversary.

Proof. Let A = (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE. Let nj be the cumulative round

sizes used in this audit, with corresponding cumulative tallies of ballots for the reported

winner kj . For round j = 1, by Definitions 6 and 3, we see that the A = Correct (the audit

stops) only when

τ1(k1, pa, p0,n1) =
Pr[K1 ≥ k1 | Ha,n1]

Pr[K1 ≥ k1 | H0,n1]
≥ 1

α
.

By Lemma 7 and Definition 7, there is a value kmin,1 = kpa,p0,α,0
min,1,0,n1

such that

Pr[K1 ≥ k1 | Ha,n1]

Pr[K1 ≥ k1 | H0,n1]
≥

Pr[K1 ≥ kmin,1 | Ha,n1]

Pr[K1 ≥ kmin,1 | H0,n1]
≥ 1

α
.
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For any round j ≥ 2, by Definition 6 and Lemma 7, A = Correct (the audit stops) if and

only if

ω j(k j,k j−1, pa, p0,n j,n j−1,α),

σ(k j−1, pa, p0,n j−1) · τ1(k j− k j−1, pa, p0,n j−n j−1)≥
1
α
.

By Lemma 8 and Definition 3, this is equivalent to

Pr[K j−1 = k j−1 | Ha,n j−1]Pr[K j ≥ k j | k j−1,Ha,n j−1,n j]

Pr[K j−1 = k j−1 | H0,n j−1]Pr[K j ≥ k j | k j−1,H0,n j−1,n j]

≥ 1
α
.

By Lemma 7 and Definition 6, we see that there exists a kmin, j = k
pa,p0,α,k j−1
min, j,n j−1,n j

≤ k j for which

Pr[K j−1 = k j−1 | Ha,n j−1]Pr[K j ≥ k j | k j−1,Ha,n j−1,n j]

Pr[K j−1 = k j−1 | H0,n j−1]Pr[K j ≥ k j | k j−1,H0,n j−1,n j]
≥

Pr[K j−1 = k j−1 | Ha,n j−1]Pr[K j ≥ kmin, j | k j−1,Ha,n j−1,n j]

Pr[K j−1 = k j−1 | H0,n j−1]Pr[K j ≥ kmin, j | k j−1,H0,n j−1,n j]

≥ 1
α

The above may be rewritten as

n j

∑
k=kmin, j

Pr[(K j,K j−1) = (k,k j−1) | H0,n j−1,n j]≤

α

n j

∑
k=kmin, j

Pr[(K j,K j−1) = (k,k j−1) | Ha,n j−1,n j]

The left hand side above is the probability of stopping in the jth round and K j−1 = k j−1,

given the null hypothesis, which is smaller than α times the same probability given the

alternate hypothesis. For different possible values of k j−1, different round sizes n j can be

used, and this same relationship will hold. That is, the relationship1 holds even if the values

1MINERVA enforces a similar relationship between risk and stopping probability but does so at the level of
the round rather than for each individual value of K j−1. By enforcing this relationship for each value of K j−1,
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of n j depend on k j−1, if n j is a function n j(α, p0, p1,ballot_mani f est,k j−1,n j−1).

Summing both sides over all values of k j−1 < kmin, j−1 gives us a similar relationship

between the probabilities of stopping in round j (given the null and alternate hypotheses

respectively)2. When both sides of the inequality are further summed over all rounds, we

get:

Pr[A = Correct | H0]≤ αPr[A = Correct | Ha]

Finally, because the total probability of stopping the audit under the alternative hypothesis

is not greater than 1, we get

Pr[A = Correct | H0]≤ α.

3.5 Consequences of resistance to an adversary choosing round size

To illustrate the practical implication of this property, we consider a toy example: an RLA

of a two-candidate contest with margin 0.01 and risk limit 0.1. For a conditional stopping

probability of 0.9 in each round of a PROVIDENCE audit, we can compute next round sizes

based on the current sample. MINERVA, however, would have a predetermined round sched-

ule. We use the default MINERVA round schedule of audit software Arlo: [x,2.5x,6.25x, ...];

that is, the next marginal round size is 1.5 times the current one—equivalently, the next total

round size is 2.5 times the current one. This approach is known to give, over a wide range

of margins, a conditional probability of stopping roughly 0.9 in the second round if the first

round size was determined for a probability of stopping 0.9.

Both the audits of our toy example therefore begin with a first round size of 17,272 with

PROVIDENCE is resistant to a strongly round-choosing adversary.
2In fact, this is the relationship MINERVA enforces for its stopping condition, additionally requiring that n j

be fixed for all values of k j−1.
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a 0.9 probability of stopping, and both will stop in the first round if the sample contains

at least 8,725 ballots for the winner. The audits are identical in the first round, and both

numbers of ballots may be computed as described in [29] and used by Arlo. We now

consider two cases for which the audit proceeds to a second round.

In one case there are 8,724 votes for the winner in the sample, just one fewer than the

minimum needed to meet the risk limit. In the MINERVA audit, we are already committed to

a second round size of 43,180 which, given the nearly-passing sample of the first round is

higher than necessary, achieving a stopping probability in the second round of 0.954. The

PROVIDENCE audit samples more than 9,000 fewer ballots with a round size of 34,078,

achieving the desired 0.9 probability of stopping.

In a less lucky first round sample, the winner recieves 8,637 ballots, few more than the

loser recieves. In the MINERVA audit, we again have to use a second round size of 43,180,

but now this round size only achieves a 0.727 probability of stopping, significantly less than

the desired 0.9. Again, the PROVIDENCE audit can scale up the second round size according

to the first sample and achieve the desired 0.9 probability of stopping with 58,007 ballots.

3.6 Theoretical properties

Here we present two interesting theoretical properties of PROVIDENCE.

3.6.1 Efficiency

It is easy to see that, for any sample for which the EoR BRAVO stopping condition is

met, the PROVIDENCE stopping condition is also met. This implies that PROVIDENCE will

never draw more ballots than EoR BRAVO.

Lemma 1. For any risk-limit α ∈ (0,1), for any margin and for any round schedule

[n1, . . . ,n j], the PROVIDENCE RLA stops before or in the same round as EoR BRAVO.

Proof. Let [n1, . . . ,n j] be a round schedule, and assume that an EoR BRAVO audit stops in
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round j, after observing k1, . . . ,k j ballots for the announced winner in each round respec-

tively. That is, the EoR BRAVO stopping condition is true:

σ(k j, pa, p0,n j)≥
1
α
.

To see the PROVIDENCE stopping condition is fulfilled, we rewrite as

1
α
≤ σ(k j, pa, p0,n j)

= σ(k j−1, pa, p0,n j−1) ·σ(k j− k j−1, pa, p0,n j−n j−1)

≤(∗)
σ(k j−1, pa, p0,n j−1) · τ1(k j− k j−1, pa, p0,n j−n j−1)

= ωr(k j,k j−1, pa, p0,n j,n j−1).

Where inequality (∗) follows from [28, Theorem 6]. Note that we apply this result on τ j

for just j = 1.

3.6.2 Markov-like stopping condition

First we introduce useful notation for the observation made in this section.

Definition 7. Let [n1, . . . ,n j] be the round schedule of an audit that has not stopped by the

round j−1. Let us define

kpa,p0,α,k j−1
min, j,n j−1,n j

= min
{

k : ω j(k,k j−1, pa, p0,n j,n j−1)≥
1
α

}
. (3.2)

As shown in Lemma 7, such a value of k
pa,p0,α,k j−1
min, j,n j−1,n j

exists, and k j ≥ k
pa,p0,α,k j−1
min, j,n j−1,n j

if and

only if the result of the audit is Correct.

We can now describe the Markov-like property of PROVIDENCE. After j−1 rounds,

having drawn n j−1 cumulative ballots with k j−1 cumulative winner ballots, the PROVIDENCE
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stopping condition in round j with size n j is equivalent to the PROVIDENCE stopping

condition for a second round where the first round size is n1 = n j−1 with k1 = k j−1 winner

ballots and a second round size n2 = n j. The particular sequence of round sizes and winner

ballots does not affect the PROVIDENCE stopping condition; only the previous cumulative

round size and number of winner ballots matters. MINERVA does not have this property, but

BRAVO also does.

Lemma 2. Let [n1, . . . ,n j−1,n j] be a round schedule for an execution of PROVIDENCE

audit that has not stopped in any of its first j− 1 rounds (i.e., for every i = 1, . . . , j− 1:

ki < k
pa,p0,α,k j−1
min, j,n j−1,n j

), then:

k
pa,p0,α,k j−1
min, j,n j−1,n j

= k
pa,p0,α,k j−1
min,2,n j−1,n j

.

Proof. This is easily observed.

3.7 (α,δ )-PROVIDENCE

As described in Chapter 2.1.1, MINERVA audits can be modified to additionally enforce

a bound on the likelihood ratio σ , yielding the ATHENA audit. We note that PROVIDENCE

too can be modified in this way. For shorthand, we refer to the resulting RLA as (α,δ )-

PROVIDENCE.

Definition 8 ((α,δ , pa, p0,k j−1,n j−1,n j)-PROVIDENCE). An (α,δ , pa, p0,k j−1,n j−1,n j)-

PROVIDENCE RLA outputs Correct if and only if

1. (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE outputs Correct, and

2. σ(k j, pa, p0,n j)≥
1
δ
.
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Chapter 4: PROVIDENCE audit simulations

We use simulations to provide additional evidence for our theoretical claims regarding

PROVIDENCE and to gain insight into audit behavior. As done in [5], we use margins from

the 2020 US Presidential election—state-wide pairwise margins of 0.05 or larger between

the two leading candidates. Narrower margins are computationally expensive, especially

for the simulations of tied elections, which, by design, have a low probability of stopping

and hence quickly increase in sample size. We use the simulator in the R2B2 software

library[15]. For each margin, we perform 104 PROVIDENCE audit trials each on a tied

election (hypothesis H0, the null hypothesis) and the election as reported (hypothesis Ha, the

alternate hypothesis). We use risk limit α = 0.1, as is common in RLAs, see for example

[16] and [7]. All trials have a maximum of five rounds and a conditional stopping probability

of 0.90 in each round. That is, each next round size is selected to be large enough to give

a 0.90 conditional probability of stopping in that round, assuming the announced tally is

correct and given the tally of previous rounds. We use a maximum of five rounds because, if

the tally were correct, virtually no audits would progress beyond five rounds given the large

conditional probability of stopping in each round.

4.1 Tied elections

In the simulations of PROVIDENCE audits of a tied election, the fraction of audits

that stop, as shown in Figure 4.1, is an estimate of maximum risk. For all margins, this

estimated maximum risk is less than the risk limit, supporting the claim that PROVIDENCE

is risk-limiting.

Simulations of audits of the election as reported provide insight into stopping probability

and number of ballots drawn when the election is as reported. Figure 4.2 shows that the

stopping probabilities over the first rounds are near and slightly above 0.9 as expected, since
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Figure 4.1: The fraction of simulated PROVIDENCE audits on tied elections that stopped in
any round (we performed five rounds at a risk limit of 0.1) as a function of contest margin.
This value is an estimate of the maximum risk of the PROVIDENCE audit. Observe that it is
below the risk limit, as expected.

our software chose round sizes to give at least a 0.9 conditional stopping probability. The

values are not as tight around 0.9 for later rounds because fewer audit trials make it to later

rounds, and our experimental probability estimates are not as accurate.

4.2 Efficiency of PROVIDENCE

We now investigate the efficiency of PROVIDENCE compared to MINERVA, SO BRAVO,

and EoR BRAVO by taking a single margin as an example: the 2020 US Presidential election

in the state of Texas, with margin 0.057. We run an additional 104 simulations for each

of the three other audits on the same underlying election and on a tied election. Both
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Figure 4.2: The fraction of simulated PROVIDENCE audits of the election as reported that
stopped for each round as a function of margin. This value is an estimate of the stopping
probability conditioned on the sample of the previous round. The average fraction for rounds
1, 2, and 3 is 0.8996, 0.9052, and 0.9098 respectively. We show only the first three rounds
since so few audits make it to rounds 4 and 5 (of the order of 104× (0.1)3 and 104× (0.1)4

respectively).

BRAVO implementations use a conditional stopping probability of 0.9 for each round, while

MINERVA uses a first round size with stopping probability 0.9 and a multiplier of 1.5 to

obtain subsequent round sizes.

Figure 4.3 shows the probability of stopping as a function of the number of ballots

sampled, a plot similar to those presented in [5]. Points above (higher probability of stopping)

and to the left (fewer ballots) represent more efficient audits. As shown, PROVIDENCE has

comparable efficiency to MINERVA, while both are significantly more efficient than either

implementation of BRAVO.
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Figure 4.3: For the entire audit, consisting of all five rounds, the fraction of simulated
audits that stopped as a function of the average number of ballots drawn for PROVIDENCE,
MINERVA, EoR BRAVO, and SO BRAVO. The average sample number (ASN) for B2 BRAVO

is included for context.
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Chapter 5: Pilot use

The Rhode Island Board of Elections performed a pilot audit in the city of Providence

in February 2022. The contest audited was a single yes-or-no question in the November

2021 election: Portsmouth’s Issue 1, "School Construction and Renovation Projects". The

question had a reported margin of 0.2567 and the audit used a risk-limit of 0.10.

A first round size of 140 ballots with large probability of stopping (0.95) was selected.

Selection order was tracked for the sake of analysis. As expected, the audit concluded in

the first round. The PROVIDENCE risk measure was 0.0418. This is the smallest risk for

which the sample would have passed a PROVIDENCE RLA for the announced election—the

p-value of the statistical test and the inverse of the PROVIDENCE ratio ω of Definition 6.

Table 5.1 shows risk measures for the drawn sample using PROVIDENCE, MINERVA and

BRAVO (both EoR and SO), all similarly defined.

ballots PROVIDENCE MINERVA SO BRAVO EoR BRAVO

140 0.0418 0.0418 0.0541 0.366

Table 5.1: Risk measures for the drawn first round of 140 ballots in the RI pilot audit. Risk
measures in bold meet the risk-limit (10%) and thus correspond to audits that would stop.

Note that the risk measures shown in Table 5.1 imply that, for the sample obtained in the

pilot audit, an EoR BRAVO audit would not have stopped in the first round, despite the large

round size. Further, if the risk limit had been 0.05 instead of 0.10, SO BRAVO also would

have required moving on to a second round.

We can use simulations to better understand typical audit behavior for the margin of this

pilot audit and contextualize the results we obtained in the pilot. We run 104 trial audits for

several stopping probabilities p. Each round size is chosen to give a probability of stopping

p assuming the announced tally and given the results of previous rounds. We use the same

0.1 risk limit and margin of 0.2557.
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Figure 5.1 shows the average number of ballots sampled for each value of p in the

simulations. The vertical line denotes the stopping probability of the first round size of

relevant votes drawn in the pilot (140 ballots). The large value of p corresponds to a large

first round size and a corresponding large value of average number of ballots. In later

sections we show why average number of ballots is not the only metric to optimize, and how

large round sizes can be beneficial from the perspective of other important metrics.

Figure 5.1: The total number of ballots sampled on average as a function of p, the conditional
stopping probability used to select each round size. We use the same contest parameters and
risk limit as the Rhode Island pilot.

For this pilot audit, extensive planning of the round schedule was not necessary because

the margin was large enough that relatively few ballots were needed to achieve the high

probability of stopping. In Chapter 6 we consider a larger state-wide contest in Virginia,

where selecting the round schedule has more significant implications. Virginia also currently
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uses ballot polling RLAs, whereas Rhode Island primarily uses batch comparison RLAs.

Some of the ideas introduced in Chapter 6 provide a context for this pilot case as well.

For the sake of analysis, the selection order of the ballots sampled during the pilot was

also recorded. Figure 5.2 shows the cumulative tally of winner ballots after each new ballot

in the selection order is added to the sample.

We observe two interesting phenomena in this particular sample’s selection order. First,

an SO BRAVO audit of this sample stops because the BRAVO condition is met when the

winner votes in the sample (orange line) surpasses the minimum number of winner ballots

need to meet the BRAVO stopping condition (blue line) earlier in the sample1. EoR BRAVO,

however, does not stop at sample size 140, the number of relevant ballots drawn during the

pilot. It might be difficult to explain to the public why SO BRAVO stops in more extreme

cases like this, where the condition is met early in the sample, but the rest of the sample is

ignored. Second, the orange line is below the dotted green line, which represents half the

sample size, at a sample size of 11; only 5 of the first 11 ballots were for the announced

winner. A first round of size 11 would have resulted in a smaller average total number of

ballots drawn, but would have provided a misleading sample (suggesting that the winner

was incorrectly reported) due to a too-small sample size. Both of these observations are

addressed more generally in Chapter 6.

We also compute the BRAVO test statistic, σ , for each cumulative number of winner votes

throughout the selection order. Figure 5.3 shows that BRAVO ratio, σ from Equation 2.1.

While the value of σ increases to above 1/0.1 = 10 in the middle of the sample, it falls back

below this line by the end.

1Such cases also provide insight into how PROVIDENCE is a sharper test in expectation because SO BRAVO
ignores information from the rest of the sample after the BRAVO condition is met at some point earlier in the
selection order.
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Figure 5.2: For each sample size from 1 to 140, the intermediate cumulative sum of ballots
for the announced winner is shown. Observe that SO BRAVO would stop because the
minimum number of ballots required to satisfy the BRAVO stopping condition (blue line) is
achieved early on (when the orange line crosses the blue one) in the audit. However, because
the BRAVO condition is no longer satisfied at 140 ballots, an EoR BRAVO audit would not
have stopped. Further, at a sample size of 11, the orange line is not even above the dotted
green line representing half the sample size and the winner has fewer than half the relevant
votes in the sample.
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Figure 5.3: For each sample size from 1 to 140, the intermediate BRAVO ratio σ (Equa-
tion 2.1) is shown. Along the path, the ratio exceeds 1/0.1 = 10 and so an SO BRAVO audit
stops for this selection order at risk limit α = 0.1, but 1/0.05 = 20 is never exceeded and so
an SO BRAVO audit with risk limit α = 0.05 does not stop. Note that an EoR BRAVO audit
does not stop for either risk limit because the condition is only evaluated at the end of the
round.
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Chapter 6: Audit workload

Some election audits have benefited from a one-and-done approach: draw a large sample

with high probability of stopping in the first round and usually avoid a second round

altogether. This is appealing for two reasons. Firstly, rounds have some overhead in both

time and effort. Thus the time and person-hours of an audit grows not just with the number

of ballots sampled but also with the number of rounds. Secondly, smaller first round sizes are

not large enough to accurately capture the distribution of votes. There is a higher probability

that the true winner has fewer votes in the audit sample than some other candidate. On the

other hand, a one-and-done audit may draw more ballots than are necessary; a more efficient

round schedule could require less effort and time pre-certification. To evaluate the quality

of various round schedules, we construct a simple workload model. Using this model we

show how optimal round schedules can be chosen. We provide software that can be used by

election officials to choose round schedules based on estimates of the model parameters like

maximum allowed probability of a misleading audit sample.

As an example, we consider the US Presidential contest in the 2016 Virginia statewide

general election. This contest had a margin of 0.053 between the two candidates with

the most votes. Analytical approximation of the expected audit behavior (quantities like

expected total number of ballots sampled or total number of rounds) is not straightforward.

Therefore we use the typical approach of simulations, again with risk limit 0.1.

We simulate audits considering each candidate with a column in the results available

at the Virginia Department of Elections website, including irrelevant ballots. We consider

a simple round schedule, in which each round is selected to give the same probability of

stopping, p. That is, if the audit does not stop in the first round, we select a second round size

which, given the sample drawn in the first round, will again have a probability of stopping p

in the second round. Note that since there are multiple candidates, we compute the minimum
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round size to achieve stopping probability p for each pairwise contest between the winner

and one of the losers, and we then select the largest such minimum round size and scale it

up according to the proportion of the total ballots that are relevant to that pairwise contest.

For this round schedule scheme, a one-and-done audit is achieved by choosing large p, say

p = .9 or p = .95. We run 104 trial audits for each value of p, assuming the reported results

are correct1.

Note that simulations of audits of tied elections are not necessary, as all the audits we are

considering are risk-limiting and hence we already know the performance to expect when

auditing a tied election, even one not reported as such.

Importantly, note that MINERVA does not appear in the analysis in this section. Questions

about the efficiency of MINERVA for its necessarily fixed round schedules are addressed

in section 4, but in this section round sizes are chosen to have specified probabilities of

stopping given previous samples. MINERVA is not known to be risk-limiting in this setting,

and thus cannot be used for RLAs that proceed in this way.

6.1 Person-hours

6.1.1 Average total ballots.

The simplest workload models are a function of just the total number of a ballots

sampled2. Figure 6.1 shows the average total number of ballots sampled as a function of p.

It is straightforward to show that PROVIDENCE and both forms of BRAVO collapse to the

same test when each round corresponds to a single ballot. Figures 6.1 shows that for larger

stopping probabilities p (i.e. larger rounds), PROVIDENCE requires fewer ballots on average.

In particular, the savings of PROVIDENCE become larger as p increases; for p = 0.95, EoR

BRAVO and SO BRAVO require more than 2 and 1.4 times as many ballots as PROVIDENCE

1For this particular round schedule scheme, computing the expected number of rounds is straightforward
analytically, but the expected number of ballots is still difficult, and so we use simulations.

2Sometimes total distinct ballots sampled is used, but for the margins we use in our examples in this
section, the difference between total distinct ballots and total ballots is very small[28]. It is straightforward to
modify the model we discuss here to account for total distinct ballots.
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Figure 6.1: The average total number of ballots sampled, as a function of p, the conditional
stopping probability used to select each round size, for ballot polling audits of the 2016
US Presidential election in the US State of Virginia. Error bars show the 0.25 and 0.75
quantiles. For sufficiently large p (p≥ 0.75), the 0.25 and 0.75 quantiles are both equal to
the first round size, and this is shown by the downward arrows.

respectively.

6.1.2 Round overhead.

It is clear that average number of ballots alone is an inadequate workload measure.

(Consider a state conducting its audit by selecting a single ballot at random, notifying

just the county where the ballot is located, and then waiting to hear back for the manual

interpretation of the ballot before moving on to the next one. This of course is inefficient

and is why audits are actually performed in rounds.)

In a US state-wide RLA, the state organizes the audit by determining the random sample
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and communicating with the counties, but election officials at the county level physically

sample and inspect the ballots after drawing them from secure storage boxes stored in county

locations. Therefore each audit round requires some number of person-hours for set up and

communication between state and county. This overhead for a round includes choosing the

round size, generating the random sample, and communicating that random sample to the

counties, as well as the communication of the results back to the state afterwards.

Consequently, we now consider a model with a constant per-ballot workload wb and a

constant per-round workload cr. So for an audit with expected number of ballots Eb and

expected number of rounds Er, we estimate that the workload W of the audit is

W (Eb,Er) = Ebwb +Ercr +C (6.1)

Note there is also some constant overhead of workload for the whole audit, namely C

in Equation 6.1, which we take to be zero in our examples but could be used by election

officials to represent, for example, the effort of constructing a ballot manifest. For simplicity,

(and without loss of generality), we measure in multiples of the per ballot workload; that is,

we assume it is one unit, wb = 1. A per round workload of cr = x corresponds to a per round

workload which is x times the per ballot workload. We use cr = 1000 as a conservative

example. That is, we set the overhead of a round equal to the workload of sampling 1000

ballots. Based on available data[7], the time retrieving and analyzing each individual ballot

is on the order of 75 seconds which means that cr = 1000 is equivalent to roughly 20

person-hours of workload. This corresponds to about 15 minutes being spent, on average,

per round in each of the 133 counties of Virginia, a clearly conservative workload estimate.

We do not consider cr < 1 because it is not possible for the round overhead to be smaller

than the workload corresponding to a single ballot.

As shown in Figure 6.2, average workloads first reduce as stopping probability increases;

this is likely due to a decrease in the number of rounds. After hitting a sweet spot, average
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workloads again increase with stopping probability; this time, likely because the average

number of rounds does not decrease much and the cost changes because of number of

ballots drawn, which increases with round size. PROVIDENCE achieves the lowest minimum

average workload at roughly p = 0.7 for our example choice of cr = 1000.

Figure 6.2: For workload parameters wb = 1 and cr = 1000, this plot shows the expected
workload for various values of p. Expected workload is found using Equation 6.1 and the
average number of ballots and rounds in our simulations as the expected number of ballots
and rounds. The 0.25 and 0.75 quantiles are shown as in Figure 6.1.

Importantly, this gives us a way to estimate the minimum expected workload, as well

as which round schedule value p achieves it, for arbitrary round workload. For each round

workload cr, we produce a dataset analagous to that of Figure 6.2 and then find the minimum

average workload achieved for each of the audits and its corresponding stopping probability

p.

Figure 6.3 shows the optimal achievable workload for a wide range of per round work-
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loads. For very low round workloads, the workload function approaches just the total number

of ballots, and so workload is minimized by minimizing the number of ballots drawn, which

corresponds to small round sizes, and we would expect all three audits to behave similarly,

as ballot-by-ballot audits, with the smallest workload. On the other hand, for extremely large

values of round workload, the average number of ballots has little impact on the workload

function, and so the three audits again have similar values, all corresponding to large round

sizes in order to minimize the number of rounds. We know that there is variation in the

number of ballots used by each type of audit for large round sizes (a factor of two for

p = 0.9), but these values would be small in comparison to cr. We observe this behaviour in

Figure 6.3 for extremely small and large workload values. For more reasonable values of

the round workload cr, SO BRAVO and EoR BRAVO achieve minimum workload roughly

1.1 and 1.3 times greater than that of PROVIDENCE.

Figure 6.4 shows the corresponding round schedule parameters p that achieve these

minimal workloads. As expected, an overhead for each round means that larger round sizes

are needed to achieve an optimal audit, and so for all three audits p increases as a function

of cr. Notice that PROVIDENCE is generally above and to the left of SO BRAVO, and SO

BRAVO is generally above and to the left of EoR BRAVO. This relationship reflects the

fact that for the same round workload, PROVIDENCE can get away with a larger stopping

probability because it requires fewer ballots.

6.1.3 Precinct overhead.

For a more complete model, we can also introduce container-level workload. If a round

requires multiple ballots from a single container, the container need only be unsealed once.

Based on a Rhode Island pilot RLA report[7], this may mean that a ballot from a new

container requires roughly twice the time as a ballot from an already-opened container.

Typically available election results give per-precinct granularity of vote tallies, rather than

individual container information. In Virginia, however, most precincts have a single ballot
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Figure 6.3: For varying round workload cr, the optimal average workload achievable by
each audit, as a fraction of the PROVIDENCE values.

scanner whose one box has sufficient capacity for all the ballots cast in that precinct anyways,

and so we model the per-container workload as a per-precinct workload, cp. In this model,

the workload estimate incurs an additional workload of cp every time a precinct is sampled

from for the first time in a round. That is, let Epi be the expected number of distinct precincts

sampled from in round i, and let Ep = ∑i Epi. Then the new model is

W (Eb,Er,Ep) = Ebwb +Ercr +Epcp +C (6.2)

We can again explore the minimum achievable workloads under this model, as shown in

Figure 6.5.
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Figure 6.4: The optimal (workload-minimizing) stopping probability p for varying work-
load model parameters cr. (Note that the steps in this function are a consequence of our
subsampling the workload function. That is, the workload-minimizing value of p for each
cr is only allowed to take on values at increments of 0.05.)

6.2 Real time

Given tight certification deadlines, the total real time to conduct the RLA is also an

important factor to consider when planning audits. Because each county can sample ballots

for the same round concurrently, the total real time for a round depends only on the slowest

county. In Virginia, Fairfax County typically has the most votes cast by a significant

difference; in the contest we consider, Fairfax County had 551 thousand votes cast, more

than double the 203 thousand of second-highest Virginia Beach City. Consequently, we

model the expected total real time T of an audit using just the largest county, and we define

analagous variables for the expected values in just the largest county. Note that some other
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Figure 6.5: Optimal average workload using the workload Equation 6.2 for varying cp,
given as a fraction of the value for PROVIDENCE. Similar to Figure 6.3, we show a generous
range of values for the workload variable, cp in this case. If the time for a single ballot is 75
seconds, then cp = 50 corresponds to over an hour of extra time to sample a ballot from a
new container.
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county may be slower, having fewer votes but also less auditing resources; but still, a slowest

county exists. In this example, we take it to be Fairfax, the largest. For the slowest county,

let the expected total ballots sampled be Ēb, the expected number of rounds Ēr, and the

expected number of distinct precinct samples summed over all rounds be Ēp. Similarly, we

use real time per-ballot, per-round, and per-precinct workload variables, tb, tr, and tp. So the

real time of the audit is estimated by

T (Ēb, Ēr, Ēp) = Ēbtb + Ērtr + Ēptp +C (6.3)

As before, we can use our simulations to estimate Ēb, Ēr, and Ēp using the corresponding

averages over the trials. Available data to estimate values for tb, tr, and tp is limited, and so

we take as an example the values tb = 75 seconds, tr = 3 hours, and tp = 75 seconds3. In

practice, election officials could use our software and their own estimates of these values

to explore choices for round schedules. Figure 6.6 shows how the estimated real time for

these values differs as a function of p. It should be noted that real values of tb, tr, and tp

will vary greatly based on the number of parallel teams retrieving and checking ballots, the

distribution of ballots and containers both in number and physical space, and other factors.

We provide Figure 6.6 only as an example of the general shape and behavior of this function.

Use of this optimal scheduling tool would depend on parameter estimates tailored to each

case.

3The value tb = 75 seconds corresponds to a serial retrieval and interpretation of the ballots based on the
[7] timing, tp = 75 seconds corresponds to the approximate doubling in time for new-box ballots as reported
in [7] in the ballot-level comparison timing data, and tr = 3 hours is just a guess at an approximate order of
magnitude for this variable.
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Figure 6.6: The real time as estimated by Equation 6.3 for varying p with expected values as
estimated by our simulations. Error bars show the 0.25 and 0.75 quantiles. Unlike Figures
6.1 and 6.2, the quantiles still differ for large p because while the the number of ballots
drawn in the first round in Virginia is constant, the number drawn in Fairfax County is
variable.
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Chapter 7: Misleading samples

Unfortunately, efficiency alone is not sufficient for planning audits. In the US today,

election officials have a legitimate need to include personal safety as a consideration. In

a random sample, a true loser may receive more votes than the true winner. This happens

more often when the sample sizes are small, like for a hypothetical first round size of 11

in the pilot audit, as seen in Figure 5.2. In the abstract, a misleading sample in an early

round is dealt with by drawing more ballots (moving on to another round), but in practice it

serves to create expectations or suspicions that then need to be managed by election officials.

Hence there is reason to structure round sizes so that they are unlikely to misrepresent the

true outcome.

We introduce the notion of a misleading sample, any cumulative sample which, assuming

the announced outcome is correct, contains more ballots for a loser than for the winner. We

can again use our simulations to gain insight into the frequency of misleading samples. For

each stopping probability p, Figure 7.1 gives the proportion of simulated audits that had a

misleading sample at any point. Notably, this proportion is as high as 1 in 5 for the smaller

stopping probability round schedules. Accordingly, we introduce a new parameter to our

audit-planning tool, the maximum acceptable probability that the audit is misleading, the

misleading limit.

In Figure 7.1, horizontal lines are included to show misleading limits of 0.1, 0.01, and

0.001. To achieve a probability of a misleading sample of at most 0.1, a round schedule

with at least roughly p = .3 is needed. To achieve a probability of misleading of roughly

0.01, a round schedule with p = 0.8 is needed, and to achieve a probability of misleading of

roughly 0.001, a round schedule with p = 0.95 is needed. It is not unreasonable to think

that election officials might choose a misleading limit of 0.01, or smaller, given the state

of public perception of election security in the US and the associated threats of violence.
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Figure 7.1: The proportion of simulated PROVIDENCE audits for the Virginia election
parameters that had a misleading sample in any round.

Consequently, the desired misleading limit may be a deciding constraint in the choice of

round schedule.

We observe a similar behavior in our simulations of audits on the contest from the pilot

audit. Figure 7.1 also shows the proportion of the pilot simulations which contained a

misleading sample in any round. Despite the large difference in margin (∼ 0.05 in Virginia

and ∼ 0.25 in the pilot) we still observe that a misleading limit of 0.01 is first achieved at

roughly p = 0.8 and 0.001 at p = 0.95.

If election officials wish to enforce a misleading limit for all the rounds, our simulation

analysis could help. On the other hand, for a given round, it is straightforward to compute

analytically the probability that a loser has more votes than the winner in the sample.

Table 7.1 shows for various margins the minimum first round size n that guarantees a
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Figure 7.2: The proportion of simulated PROVIDENCE audits for the pilot audit parameters
that had a misleading sample in any round.
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probability of a misleading sample at most M ∈ {0.1,0.01,0.001}. For all values of M

and all margins, PROVIDENCE achieves a higher probability of stopping than either EoR

BRAVO or SO BRAVO. As seen in the Table 7.1, to enforce M = 0.01 requires minimum

round sizes with at least roughly a 0.8 probability of stopping in the first round. Even if the

most efficient audit schedule (by either workload or real time measures) would use a lower

stopping probability p to choose the first round size, the election officials may opt to use

this constraint on the probability of a misleading sample as the deciding factor in planning

their audits.

7.1 Misleading SO BRAVO sequences.

As we consider the idea of misleading samples, it is noteworthy that SO BRAVO suffers

from a different and unique type of misleading result.

After drawing a cumulative n > 1 ballots in a round, some number k of them are votes

for the announced winner. There are
(n

k

)
possible sequences of ballots which can lead to

such a sample. Given a value of k, however, the particular sequence of the sample that led to

that value of k contains no additional information about whether the sample is more likely

under the alternative or null hypotheses. That is to say, Pr[K = k|Ha] and Pr[K = k|H0] have

the same value regardless of the sequence. Despite this, the SO BRAVO RLA stopping

condition is not just a function of n and k but also a function of the sequence, the selection

order. In particular, if the sequence of ballots is such that the standard BRAVO stopping

condition was met for some n′ < n and corresponding k′ < n, the audit will stop, even if by

the end of the sequence the values k and n no longer meet the BRAVO condition. We refer to

such sequences which stop under SO BRAVO, but not under EoR BRAVO, as misleading

sequences. To be clear, this is not a mathematical issue; stopping in such cases is still a

correct application of Wald’s SPRT result [27]. The misleading nature of such stoppages is

the note we are making. This is another case where election officials might have difficulty

explaining the misleading situation to the public.
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M margin n Prov SO EoR
0.1 0.25 25 0.221 0.152 0.115

0.2 41 0.178 0.169 0.105
0.15 73 0.202 0.186 0.141
0.1 163 0.222 0.182 0.107
0.05 657 0.227 0.192 0.127
0.04 1027 0.237 0.193 0.124
0.03 1825 0.246 0.194 0.124
0.02 4105 0.246 0.195 0.124
0.01 16423 0.246 0.196 0.124

0.01 0.25 85 0.792 0.707 0.559
0.2 133 0.826 0.71 0.593
0.15 239 0.817 0.712 0.549
0.1 539 0.805 0.717 0.567
0.05 2163 0.817 0.721 0.569
0.04 3381 0.82 0.722 0.563
0.03 6011 0.824 0.723 0.573
0.02 13527 0.824 0.723 0.57
0.01 54117 0.824 0.724 0.57

0.001 0.25 149 0.962 0.889 0.783
0.2 235 0.963 0.89 0.768
0.15 421 0.958 0.894 0.801
0.1 951 0.958 0.894 0.793
0.05 3815 0.96 0.896 0.785
0.04 5965 0.961 0.896 0.791
0.03 10607 0.961 0.897 0.787
0.02 23869 0.962 0.897 0.787
0.01 95491 0.962 0.897 0.787

Table 7.1: For various margins, this table gives the minimum first round size n to achieve at
most a probability M of a misleading sample in the first round. The corresponding stopping
probabilities of PROVIDENCE, SO BRAVO, and EoR BRAVO are given for each value of n.
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In particular, for large round sizes n, there exist sequences which in total provide

very strong evidence in support of the null hypothesis but which still stop, confirming the

alternative hypothesis. While contrived (and unlikely), an example demonstrating such

sequences is given in Figure 7.3. At best, this is an undesirable trait in the SO application of

BRAVO in round-by-round audits which demonstrates its information inefficiency (stopping

due to a sub-sequence and then ignoring later evidence). At worst, such a sequence could be

drawn in an audit and leave election officials with a difficult job explaining the confirmation

of reported results despite poor evidence.

Note that all possible selection orders with the same ultimate, cumulative tally of winner

ballots occur with equal probability under both hypotheses. SO BRAVO accepts some such

sequences and rejects other despite equivalent cumulative evidence.

Recall from Chapter 5 that the pilot PROVIDENCE RLA performed in Providence, Rhode

Island had an SO BRAVO misleading sequence. In particular, the audit passed with an SO

BRAVO risk measure of 0.0541 but the final cumulative tally of the sample gives a BRAVO

risk measure of 0.366.

It is easy to use our simulations to see how often SO BRAVO misleading sequences

occur by checking whether the final cumulative sample of each SO BRAVO trial meets the

EoR BRAVO stopping condition and counting those which do not. Figure ?? shows the

proportion of simulated SO BRAVO audits that stopped with a misleading sequence. Unlike

the more general misleading sample discussed so far, these misleading sequences are unique

to SO BRAVO audits, and Figure 7.4 only shows the proportion of audits that stopped with a

misleading sequence; additional SO BRAVO audits also contained misleading samples.
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Figure 7.3: Contrived misleading sequences for which SO BRAVO audits would stop despite
the cumulative sample at the end of the round providing very poor evidence for rejecting the
null hypothesis. None of EoR BRAVO, MINERVA, and PROVIDENCE stop on these samples,
yet SO BRAVO stops because of the early sub-sequence meeting the stopping condition;
all later evidence in the sample is ignored. Note that sequences like the top example occur
with negligible probability (it is shown instead to illustrate the information-inefficiency of
SO BRAVO); the frequency of samples that meet the BRAVO stopping condition in an early
sub-sequence but not at the end of a round is considered in Figure 7.4.
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Figure 7.4: The proportion of simulated sequences that are misleading sequences in the SO
BRAVO audit as a function of p.
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Chapter 8: Conclusion

A rigorous tabulation audit is an important part of a secure election. We present

PROVIDENCE and demonstrate that it is as efficient as MINERVA and as flexible as BRAVO.

We present proofs and simulation results to verify the claimed properties of PROVIDENCE,

and we provide an open source implementation of the stopping condition and useful related

functionality for planning audits. We define the constraint of an acceptable probability of a

misleading audit sample, and describe its importance to the planning process.

8.1 Availability

We provide an open source implementation of PROVIDENCE in the R2B2 software

library for R2 and B2 audits [15]. The R2B2 implementation of PROVIDENCE has been

incorporated as an option in Arlo, the most commonly used RLA software [25].

R2B2 also contains software to test stopping conditions and find round sizes for given

probability of stopping and probability of a misleading sample. The code for simulations as

well as workload and real time analysis is also provided.

8.2 Future work

8.2.1 Optimal ballot polling RLAs

As noted in Chapter 2, BRAVO is an instance of Wald’s classic Sequential Probability

Ratio Test (SPRT) [27]. Wald and Wolfowitz [26] showed that the SPRT is optimal in the

sense that, among all sequential tests with significance α , the SPRT minimizes the expected

number of ballots sampled assuming the alternative hypothesis. In other words, for ballot-

by-ballot audits, no other statistical test will generate more efficient ballot polling RLAs than

the SPRT. Of course, we point out that real audits progress in rounds for a number of reasons.

59



Note that the SPRT deals with a special case of our problem, that with round schedule

[1,1,1, . . .]. For the more general round-by-round problem, one may wonder if there exists

a test which, for any round schedule, minimizes the expected number of ballots sampled

assuming the alternative hypothesis. It is unknown whether MINERVA or PROVIDENCE

have this property. Either proving that one or both of MINERVA and PROVIDENCE have this

optimality property or that some other test has it is a promising direction for future work.
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Appendix A: Proofs

Lemma 3. For 0 < p0 < pa < 1 and n > 0, the ratio σ(k, pa, p0,n) is strictly increasing as

a function of k for 0≤ k ≤ n.

Proof. See [29, Lemma 4].

Lemma 4. Given a monotone increasing sequence: a1
b1
, a2

b2
, . . . , an

bn
, for ai,bi > 0, the se-

quence: zi =
∑

n
j=i a j

∑
n
j=i b j

is also monotone increasing.

Proof. See [29, Lemma 2].

Lemma 5. For 0 < p0 < pa < 1 and n > 0, the ratio τ1(k, pa, p0,n) is strictly increasing as

a function of k for 0≤ k ≤ n.

Proof. Apply Lemmas 3-4.

Lemma 6. Given a strictly monotone increasing sequence: x1,x2, . . .xn and some constant

A,

A≤ xi⇔∃imin ≤ i s.t. ximin−1 < A≤ ximin ≤ xi,

unless A≤ x1, in which case imin = 1.

Proof. Evident.

Lemma 7. For A = (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE, there exists

a k
pa,p0,α,k j−1
min, j,n j−1,n j

= kmin, j(PROVIDENCE, pa, p0,k j−1,n j−1,n j) such that

A (X j) = Correct ⇐⇒ k j ≥ kmin, j(PROVIDENCE,nj , pa, p0).

Proof. From Definition 6,

A (X j) = Correct ⇐⇒ ω j(k j,k j−1, pa, p0,n j,n j−1)≥
1
α
.
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Now to apply Lemma 6, it suffices to show that ω j is monotone increasing with respect to

k j. For j = 1, we have ω1 = τ1, so ω1 is strictly increasing by Lemma 5. For j ≥ 2,

ω j(k j,k j−1, pa, p0,n j,n j−1,α) =

σ(k j−1, pa, p0,n j−1) · τ1(k j− k j−1, pa, p0,n j−n j−1).

As a function of k j, σ is constant, and thus ω is strictly increasing by Lemma 5. Therefore

by Lemma 6, we have the desired property.

Lemma 8. For j ≥ 1,

Pr[Kj = kj | nj ,Ha]

Pr[Kj = kj | nj ,H0]
= σ(k j, pa, p0,n j).

Proof. We induct on the number of rounds. For j = 1, we have

Pr[K1 = k1 | n1,Ha]

Pr[K1 = k1 | n1,H0]
=

Pr[K1 = k1 | n1,Ha]

Pr[K1 = k1 | n1,H0]

=
Bin(k1,n1, pa)

Bin(k1,n1, p0)
= σ(k1, pa, p0,n1).

Suppose the lemma is true for round j = m with history km. Observe that

Pr[Km+1 = km+1 | nm+1,Ha]

Pr[Km+1 = km+1 | nm+1,H0]

=
Pr[Km = km | nm+1,Ha] ·Pr[K′m+1 = k′m+1|km,nm+1,Ha]

Pr[Km = km | nm+1,H0] ·Pr[K′m+1 = k′m+1|km,nm+1,H0]

= σ(km, pa, p0,nm) ·
Pr[K′m+1 = k′m+1|km,nm+1,Ha]

Pr[K′m+1 = k′m+1|km,nm+1,H0]
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by the induction hypothesis. Then this is simply equal to

σ(km, pa, p0,nm) ·
Bin(k′m+1,n

′
m+1, pa)

Bin(k′m+1,n
′
m+1, p0)

= σ(km+1, pa, p0,nm+1)
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